Skip to main content Accessibility help

Stress evolution in Si during low-energy ion bombardment

  • Yohei Ishii (a1), Charbel S. Madi (a2), Michael J. Aziz (a3) and Eric Chason (a4)


Measurements of stress evolution during low-energy argon ion bombardment of Si have been made using a real-time wafer curvature technique. During irradiation, the stress reaches a steady-state compressive value that depends on the flux and energy. Once irradiation is terminated, the measured stress relaxes slightly in a short period of time to a final value. To understand the ion-induced stress evolution and relaxation mechanisms, we account for the measured behavior with a model for viscous relaxation that includes the ion-induced generation and annihilation of flow defects in an amorphous Si surface layer. The analysis indicates that bimolecular annihilation (i.e., defect recombination) is the dominant mechanism controlling the defect concentration both during irradiation and after the cessation of irradiation. From the analysis, we determine a value for the fluidity per flow defect.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Chason, E., Picraux, S.T., Poate, J.M., Borland, J.O., Current, M.I., Diaz de la Rubia, T., Eaglesham, D.J., Holland, O.W., Law, M.E., Magee, C.W., Mayer, J.W., Melngailis, J., and Tasch, A.F.: Ion beams in silicon processing and characterization. J. Appl. Phys. 81, 6513 (1997).
2.Medhekar, N.V., Chan, W.L., Shenoy, V.B., and Chason, E.: Stress-enhanced pattern formation on surfaces during low-energy ion-bombardment. J. Phys.: Condens. Matter 21, 224021 (2009).
3.Volkert, C.A.: Stress and plastic flow in silicon during amorphization by ion bombardment. J. Appl. Phys. 70, 3521 (1991).
4.Volkert, C.A. and Polman, A.: Radiation-enhanced plastic flow of covalent materials during ion irradiation. Mater. Res. Soc. Symp. Proc. 235, 3 (1992).
5.Snoeks, E., Polman, A., and Volkert, C.A.: Densification, anisotropic deformation, and plastic flow of SiO2 during MeV heavy ion irradiation. Appl. Phys. Lett. 65, 2487 (1994).
6.Dahmen, K., Giesen, M., Ikonomov, J., Starbova, K., and Ibach, H.: Steady-state surface stress induced in noble gas sputtering. Thin Solid Films 428, 6 (2003).
7.Chan, W.L., Chason, E., and Iamsumang, C.: Surface stress induced in Cu foils during and after low energy ion bombardment. Nucl. Instrum. Methods Phys. Res., Sect. B 257, 428 (2007).
8.Chan, W.L., Zhao, K., Vo, N., Ashkenazy, Y., Cahill, D.G., and Averback, R.S.: Stress evolution in platinum thin films during low-energy ion irradiation. Phys. Rev. B 77, 205405 (2008).
9.Debelle, A., Abadias, G., Michel, A., and Jaouen, C.: Stress field in sputtered thin films: Ion irradiation as a tool to induce relaxation and investigate the origin of growth stress. Appl. Phys. Lett. 84, 5034 (2004).
10.Chan, W.L. and Chason, E.: Stress evolution and defect diffusion in Cu during low energy ion irradiation: Experiments and modeling. J. Vac. Sci. Technol., A 26, 44 (2007).
11.Kalyanasumdaram, N., Moore, M.C., Freund, J.B., and Johnson, H.T.: Stress evolution due to medium-energy ion bombardment of silicon. Acta. Mater. 54, 483 (2006).
12.Brongersma, M.L., Snoeks, E., van Dillen, T., and Polman, A.: Origin of MeV ion irradiation-induced stress changes in SiO2. J. Appl. Phys. 88, 59 (2000).
13.Mayr, S.G., Ashkenazy, Y., Albe, K., and Averback, R.S.: Mechanisms of radiation-induced viscous flow: Role of point defects. Phys. Rev. Lett. 90, 055505 (2003).
14.Witvrouw, A. and Spaepen, F.: Viscosity and elastic constants of amorphous Si and Ge. J. Appl. Phys. 74, 7154 (1993).
15.Chason, E.: A kinetic analysis of residual stress evolution in polycrystalline thin films. Thin Solid Films 526, 1 (2012).
16.Stoney, G.G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A 82, 172 (1909).
17.Freund, L.B. and Suresh, S.: Thin Film Materials (Cambridge University Press, Cambridge, UK, 2003).
18.Ziegler, J.F. and Biersack, J.P.: SRIM-2008 (IBM Co., Yorktown, NY, 19842008).
19.Madi, C.S., George, H.B., and Aziz, M.J.: Linear stability and instability patterns in ion-sputtered silicon. J. Phys.: Condens. Matter 21, 224010 (2009).
20.Madi, C.S.: Linear Stability and Instability Patterns in Ion Bombarded Silicon Surfaces. Ph.D Thesis, Harvard University, Cambridge, MA, 2012.
21.Jenkins, M.W.: New preferential etch for defects in silicon-crystals. J. Electrochem. Soc. 124, 757 (1977).
22.George, H.B., Tang, Y., Chen, X., Li, J., Hutchinson, J.W., Golovchenko, J.A., and Aziz, M.J.: Nanopore fabrication in amorphous Si: Viscous flow model and comparison to experiment. J. Appl. Phys. 108, 014310 (2010).
23.Brongersma, M.L., Snoeks, E., and Polman, A.: Temperature dependence of MeV heavy ion irradiation-induced viscous flow in SiO2. Appl. Phys. Lett. 71, 1628 (1997).
24.Norris, S.A., Samela, J., Bukonte, L., Backman, M., Djurabekova, F., Nordlund, K., Madi, C.S., Brenner, M.P., and Aziz, M.J.: Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation. Nat. Commun. 2, 276 (2011).
25.Madi, C.S., Anzenberg, E., Ludwig, K.F., and Aziz, M.J.: Mass Redistribution Causes the Structural Richness of Ion-Irradiated Surfaces. Phys. Rev. Lett. 106, 066101 (2011) Erratum 110, 069903.
26.Tai, K., Averback, R.S., Bellon, P., Ashkenazy, Y., and Stumphy, B.: Temperature dependence of irradiation-induced creep in dilute nanostructured Cu-W alloys. J. Nucl. Mater. 422, 8 (2012).
27.Coffa, S. and Libertino, S.: Room-temperature diffusivity of self-interstitials and vacancies in ion-implanted Si probed by in situ measurements. Appl. Phys. Lett. 73, 3369 (1998).
28.Fahey, P.M., Griffin, P.B., and Plummer, J.D.: Point-defects and dopant diffusion in silicon. Rev. Mod. Phys. 61, 289 (1989).
29.Bronner, G.B. and Plummer, J.D.: Gettering of gold in silicon - A tool for understanding the properties of silicon interstitials. J. Appl. Phys. 61, 5286 (1987).


Stress evolution in Si during low-energy ion bombardment

  • Yohei Ishii (a1), Charbel S. Madi (a2), Michael J. Aziz (a3) and Eric Chason (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed