Skip to main content Accessibility help
×
Home

Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor

  • Jie Su (a1), Eric A. Armour (a1), Balakrishnan Krishnan (a1), Soo Min Lee (a1) and George D. Papasouliotis (a1)...

Abstract

We are reporting on stress engineering utilizing AlN/GaN superlattices (SLs) for epitaxy of GaN layers on 200 mm silicon substrates carried out in Veeco's Propel™ rotating disk, single wafer metal organic chemical vapor deposition (MOCVD) reactor. The Turbodisc® reactor is designed to have homogeneous alkyl/hydride flow distribution and uniform temperature profile, which translate into excellent uniformity and concentric symmetry in epilayer thickness and alloy composition. This feature results in uniform and controllable stress in epilayers across large-size substrates. Crack-free 2 μm GaN layers were grown on 200 mm Si using uniformly strained AlN/GaN SLs with periods of 3–5 and 10–30 nm, respectively. Compressive and tensile stress can be precisely adjusted by changing the thickness of the AlN and GaN layers in the SLs, resulting in controllable wafer curvature/bow after cool down. For a fixed period thickness structure, the effects of growth conditions, such as growth rate of GaN, AlN V/III ratio, and growth temperature, on wafer stress were investigated.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: jsu@veeco.com

References

Hide All
1. Saito, W., Takada, Y., Kuraguchi, M., Omura, I., Ogura, T., and Ohashi, H.: High breakdown voltage AlGaN-GaN power HEMT design and high current density switching behavior. IEEE Trans. Electron Devices 50, 2528 (2003).
2. Saito, W., Takada, Y., Kuraguchi, M., Tsuda, K., and Omura, I.: Recessed-gate structure approach towards normally off high-voltage AlGaN/GaN HEMT for power electronic applications. IEEE Trans. Electron Devices 53, 356 (2006).
3. Ideda, N., Niiyama, Y., Kambayashi, H., Sato, Y., Nomura, T., Kato, S., and Yoshida, S.: GaN power transistors on Si substrates for switching applications. Proc. IEEE 98, 1151 (2010).
4. Shealy, J.: Progress in Si-based AlGaN HEMTs for RF power amplifiers. In Top. Meet. Silicon Monolithic Integr. Circuits RF Syst. 166 (2001).
5. Hoke, W.E., Chelakara, R.V., Bettencourt, J.P., Kazior, T.E., LaRoche, J.R., Kennedy, T.D., Mosca, J.J., Torabi, A., Kerr, A.J., Lee, H.S., and Palacios, T.: Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit. J. Vac. Sci. Technol., B 30, 02B101 (2012).
6. Daddar, A., Schulze, F., Wienecke, M., Gadanecz, A., Blasing, J., Veit, P., Hempel, T., Diez, A., Christen, J., and Krost, A.: Epitaxy of GaN on silicon-impact of symmetry and surface reconstruction. New J. Phys. 9, 389 (2007).
7. Cordier, Y., Moreno, J., Baron, N., Frayssinet, E., Chauveau, J., Nemoz, M., Chenot, S., Damilano, B., and Semond, F.: Growth of GaN based structure on Si (110) by molecular beam epitaxy. J. Cryst. Growth 312, 2683 (2010).
8. Wan, J., Venugopal, R., Melloch, M., Liaw, H., and Rummel, W.: Growth of crack-free hexagonal GaN films on Si (100). Appl. Phys. Lett. 79, 1459 (2001).
9. Schulze, F., Dadgar, A., Blasing, J., Diez, A., and Krost, A.: Metalorganic vapor phase epitaxy grown InGaN/GaN light-emitting diodes on Si (001) substrate. Appl. Phys. Lett. 88, 121114 (2006).
10. Olesinski, R., Kanani, N., and Abbaschian, G.: The Ga-si (gllium-silicon) system. Bull. Alloy Phase Diagrams 6, 362 (1985).
11. Sunkara, M., Sharma, S., Miranda, R., Lian, G., and Dickey, E.: Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method. Appl. Phys. Lett. 79, 1546 (2001).
12. Watanabe, A., Takeuchi, T., Hirosawa, K., Amano, H., Hiramatsu, K., and Akasaki, I.: The growth of single crystalline GaN on a Si substrate using AlN as intermediate layer. J. Cryst. Growth 128, 391 (1993).
13. Nikishin, S., Faleev, N., Antipov, V., Francoeur, S., Grave de Peralta, L., Seryogin, G., Temkin, H., Prokofyeva, T., Holtz, M., and Chu, S.: High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia. Appl. Phys. Lett. 75, 2073 (1999).
14. Dadgar, A., Blasing, J., Diez, A., Alam, A., Heuken, M., and Krost, A.: Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness. Jpn. J. Appl. Phys. 39, L1183 (2000).
15. Chen, P., Zhang, R., Zhao, Z., Xi, D., Zhou, B., Xie, S., Lu, W., and Zheng, Y.: Growth of high quality GaN layers with AlN buffer on Si (111) substrates. J. Cryst. Growth 225, 150 (2001).
16. Dadgar, A., Poschenrieder, M., Reiher, A., Blasing, J., Christen, J., Krtschil, A., Finger, T., Hempel, T., Diez, A., and Krost, A.: Reduction of stress at the initial stages of GaN growth on Si (111). Appl. Phys. Lett. 82, 28 (2003).
17. Bak, S., Mun, D., Jung, K., Park, J., Bae, H., Lee, I., Ha, J., Jeong, T., and Oh, T.: Effect of Al pre-deposition on AlN buffer layer and GaN film grown on Si (111) substrate by MOCVD. Electron. Mater. Lett. 9(3), 367 (2013).
18. Zang, K., Wang, L., Chua, S., and Thompson, C.: Structural analysis of metalorganic chemical vapor deposited AlN nucleation layers on Si (111). J. Cryst. Growth 268, 515 (2004).
19. Takeuchi, T., Amano, H., Hiramatsu, K., Sawaki, N., and Akasaki, I.: Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer. J. Cryst. Growth 115, 634 (1991).
20. Wang, D., Hiroyama, Y., Tamura, M., Ichikawa, M., and Yoshida, S.: Growth of hexagonal GaN on Si (111) coated with a thin flat SiC buffer layer. Appl. Phys. Lett. 77, 1846 (2000).
21. Kwon, M., Jeong, Y., Shin, E., Yang, J., Lim, K., Roh, J., and Nahm, K.: Effect of an Al pre-seeded AlN buffer on GaN films grown on Si (111) substrates by using SiC intermediate layers. J. Korean Phys. Soc. 41, 880 (2002).
22. Armitage, R., Yang, Q., Feick, H., Gebauer, J., Weber, E., Shinkai, S., and Sasaki, K.: Lattice-matched HfN buffer layers for epitaxy of GaN on Si. Appl. Phys. Lett. 81, 1450 (2000).
23. He, H., Fan, Z., Yao, Z., and Tang, Z.: Sputtering of ZnO buffer layer on Si for GaN blue light emitting materials. Sci. China 43, 55 (2000).
24. Fenwick, W., Melton, A., Xu, T., Li, N., Summers, C., Jamil, M., and Ferguson, I.: Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si (111) using a thin Al2O3 interlayer. Appl. Phys. Lett. 94, 22105 (2009).
25. Dargis, R., Smith, R., Arkun, F., and Clark, A.: Epitaxial rare earth oxide and nitride buffers for GaN growth on Si. Phys. Status Solidi C 11, 569 (2014).
26. Tanaka, S., Kawaguchi, Y., Sawaki, N., Hibino, M., and Hiramatsu, K.: Defect structure in selective area growth GaN pyramid on (111) Si substrate. Appl. Phys. Lett. 76, 2701 (2000).
27. Kim, M., Bang, Y., Park, N., Choi, C., Seong, T., and Park, S.: Growth of high-quality GaN on Si(111) substrate by ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 78, 2858 (2001).
28. Lin, P., Chen, J., Chen, Y., and Chang, L.: Effect of growth temperature on formation of amorphous nitride interlayer between AlN and Si (111). Jpn. J. Appl. Phys. 52, 08JB20 (2013).
29. Xi, D., Zheng, Y., Chen, P., Zhao, Z., Chen, P., Xie, S., Shen, B., Gu, S., and Zhang, R.: Microstructure of AlGaN/AlN/Si (111) grown by metalorganic chemical vapor deposition. Phys. Status Solidi A 191, 137 (2002).
30. Radtke, G., Couillard, M., Botton, G., Zhu, D., and Humphreys, C.: Scanning transmission electron microscopy investigation of the Si (111)/AlN interface grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 97, 251901 (2010).
31. Radtke, G., Couillard, M., Botton, G., Zhu, D., and Humphreys, C.: Structure and chemistry of the Si(111)/AlN interface. Appl. Phys. Lett. 100, 011910 (2012).
32. Kim, D. and Park, C.: Growth of crack-free GaN films on Si (111) substrates with AlN buffer layers. J. Korean Phys. Soc. 49, 1497 (2006).
33. Bao, Q., Luo, J., and Zhao, C.: Mechanism of TMAl pre-seeding in AlN epitaxy on Si (111) substrate. Vacuum 101, 184 (2014).
34. Lumbantoruan, F., Wong, Y., Wu, Y., Huang, W., Shrestra, N., Luong, T., Tinh, T., and Chang, E.: Investigation of TMAl preflow to the properties of AlN and GaN film grown on Si (111) by MOCVD. IEEE Int. Conf. Semicond. Electron. (2014); p. 20.
35. Ishikawa, H., Zhao, G., Nakada, N., Egawa, T., Jimbo, T., and Umeno, M.: GaN on Si substrate with AlGaN/AlN intermediate layer. Jpn. J. Appl. Phys. 38, L492 (1999).
36. Kim, M., Do, Y., Kang, H., Noh, D., and Park, S.: Effects of step-graded AlxGa1-xN interlayer on properties of GaN grown on Si (111) using ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 79, 2713 (2001).
37. Able, A., Wegscheider, W., Engl, K., and Zweck, J.: Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers. J. Cryst. Growth 276, 415 (2005).
38. Yang, Y., Xiang, P., Liu, M., Chen, W., He, Z., Han, X., Ni, Y., Yang, F., Yao, Y., Wu, Z., Liu, Y., and Zhang, B.: Effect of compositionally graded AlGaN buffer layer grown by different functions of trimethylaluminium flow rates on properties of GaN on Si (111) substrates. J. Cryst. Growth 376, 23 (2013).
39. Marchand, H., Zhao, L., Zhang, N., Moran, B., Coffie, R., Mishra, U., Speck, J., DenBaars, S., and Freitas, J.: Metalorganic chemical vapor deposition of GaN on Si (111): Stress control and application to field-effect transistors. J. Appl. Phys. 89, 7846 (2001).
40. Cheng, K., Leys, M., Degroote, S., Germain, M., and Borghs, G.: High quality GaN grown on silicon (111) using a SixNy interlayer by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 92, 192111 (2008).
41. Liu, H.F., Dolmanan, S.B., Zhang, L., Chua, S.J., Chi, D.Z., Heuken, M., and Tripathy, S.: Influence of stress on structural properties of AlGaN/GaN high electron mobility transistor layers grown on 150 mm diameter Si (111) substrate. J. Appl. Phys. 113, 023510 (2013).
42. Feltin, E., Beaumont, B., Laugt, M., de Mierry, P., Vennegues, P., Lahreche, H., Leroux, M., and Gibart, P.: Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 79, 3230 (2001).
43. Egawa, T., Moku, T., Ishikawa, H., Ohtsuka, K., and Jimbo, T.: Improved characteristics of blue and green InGaN-based light-emitting diodes on Si grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 41, L663 (2002).
44. Jang, S. and Lee, C.: High-quality GaN/Si (111) epitaxial layers grown with various Al0.3GaN0.7/GaN superlattices as intermediate layer by MOCVD. J. Cryst. Growth 253, 64 (2003).
45. Kim, T., Yang, S., Son, J., Hong, Y., and Yang, G.: Growth of a GaN epilayer on a Si (111) substrate by using an AlN/GaN superlattice and application to a GaN microcavity structure with dielectric-distributed bragg reflector. J. Korean Phys. Soc. 50, 801 (2007).
46. Ubukata, A., Ikenaga, K., Akutsu, N., Yamaguchi, A., Matsumoto, K., Yamazaki, T., and Egawa, T.: GaN growth on 150-mm-diameter (111) Si substrates. J. Cryst. Growth 298, 198 (2007).
47. Christy, D., Egawa, T., Yano, Y., Tokunaga, H., Shimamura, H., Yamaoka, Y., Ubukata, A., Tabuchi, T., and Matsumoto, K.: Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon (111) substrate. Appl. Phys. Express 6, 026501 (2013).
48. Amano, H., Iwaya, M., Kashima, T., Katsuragawa, M., Akasaki, I., Han, J., Hearne, S., Floro, J., Chason, E., and Figiel, J.: Stress and defect control in GaN using low temperature interlayers. Jpn. J. Appl. Phys. 37, L1540 (1998).
49. Waldrip, K., Han, J., Figiel, J., Zhou, H., Makarona, E., and Nurmikko, A.: Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors. Appl. Phys. Lett. 78, 3205 (2001).
50. Blasing, J., Reiher, A., Dadgar, A., Diez, A., and Krost, A.: The origin of stress reduction by low-temperature AlN interlayers. Appl. Phys. Lett. 81, 2722 (2002).
51. Raghavan, S., Weng, X., Dickey, E., and Redwing, J.: Effect of AlN interlayers on growth stress in GaN layers deposition on (111) Si. Appl. Phys. Lett. 87, 142101 (2005).
52. Han, J., Waldrip, K., Lee, S., Figiel, J., Hearne, S., Petersen, G., and Myers, S.: Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers. Appl. Phys. Lett. 78, 67 (2001).
53. Dadgar, A., Poschenrieder, M., Blasing, J., Fehse, K., Diez, A., and Krost, A.: Thick, crack-free blue light-emitting diodes on Si (11) using low-temperature AlN interlayers and in situ SixNy masking. Appl. Phys. Lett. 80, 3670 (2002).
54. Lee, K., Shin, E., and Lim, K.: Reduction of dislocations in GaN epilayers grown on Si (111) substrate using SixNy inserting layer. Appl. Phys. Lett. 85, 1502 (2004).
55. Riemann, T., Hempel, T., Christen, J., Veit, P., Clos, R., Dadgar, A., Krost, A., Haboeck, U., and Hoffmann, A.: Optical and structural microanalysis of GaN grown on SiN submonolayers. J. Appl. Phys. 99, 123518 (2006).
56. Arslan, E., Ozturk, M., Ozcelik, S., and Ozbay, E.: The effect of SixNy interlayer on the quality of GaN epitaxial layers grown on Si (111) substrates by MOCVD. Current Appl. Phys. 9, 472 (2009).
57. Wang, T., Ou, S., Horng, R., and Wuu, D.: Improved GaN-on-Si epitaxial quality by incorporating various SixNy interlayer structures. J. Cryst. Growth 399, 27 (2014).
58. Hearne, S., Chason, E., Han, J., Floro, J., Figiel, J., Hunter, J., Amano, H., and Tsong, I.: Stress evolution during metalorganic chemical vapor deposition of GaN. Appl. Phys. Lett. 74, 356 (1999).
59. Hearne, S., Han, J., Lee, S., Floro, J., Follstaedt, D., Chason, E., and Tsong, I.: Brittle-ductile relaxation kinetics of strained AlGaN/GaN heterostructures. Appl. Phys. Lett. 76, 1534 (2000).
60. Mitrovic, B., Parekh, A., Ramer, J., Merai, V., Armour, E., Kadinski, L., and Gurary, A.: Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors. J. Cryst. Growth 289, 708 (2006).
61. Mitrovic, B., Gurary, A., and Quinn, W.: Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CRD modeling. J. Cryst. Growth 303, 323 (2007).
62. Armour, E., Lu, F., Belousov, M., Lee, D., and Quinn, W.: LED growth compatibility between 2”, 4” and 6” sapphire. Semicond. Today 4, 82 (2009).
63. Heying, B., Wu, X., Keller, S., Li, Y., Kapolnel, D., Keller, B., and DenBaars, S.: Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett. 68, 643 (1996).
64. Metzger, T., Hopler, R., Born, E., Ambacher, O., Stutzmann, M., Stommer, R., Schuster, M., Gobel, H., Christiansen, S., Albrecht, M., and Strunk, H.: Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry. Philos. Mag. A 77, 1013 (1998).
65. Kaganer, V., Brandt, O., Trampert, A., and Ploog, K.: X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films. Phys. Rev. B 72, 045423 (2005).
66. Stoney, G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 82, 172 (1909).
67. Feng, X., Huang, Y., and Rosakis, A.: On the Stoney formula for a thin film/substrate system with nonuniform substrate thickness. J. Appl. Mech. 74, 1276 (2007).
68. Hoffman, R.: Stresses in thin films: The relevance of grain boundaries and impurities. Thin Solid Films 34, 185 (1976).
69. Chaudhari, P.: Grain growth and stress relief in thin films. J. Vac. Sci. Technol. 9, 520 (1972).
70. Thompson, C.: Grain growth in thin films. Annu. Rev. Mater. Sci. 20, 245 (1990).
71. Raghavan, S., Weng, X., Dickey, E., and Redwing, J.: Correlation of growth stress and structural evolution during metalorganic chemical vapor deposition of GaN on (111) Si. Appl. Phys. Lett. 88, 041904 (2006).
72. Bottcher, T., Einfeldt, S., Figge, S., Chierchia, R., Heinke, H., Hommel, D., and Speck, J.: The role of high-temperature island coalescence in the development of stresses in GaN films. Appl. Phys. Lett. 78, 1976 (2001).
73. Sheldon, B., Lau, K., and Pajamani, A.: Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films. J. Appl. Phys. 90, 5097 (2001).
74. Gao, H. and Nix, W.: Surface roughening of heteroepitaxial thin films. Annu. Rev. Mater. Sci. 29, 173 (1999).
75. Wickenden, A., Koleske, D., Henry, R., Gorman, R., Twigg, M., Fatemi, M., Freitas, J., and Moore, W.: The influence of OMVPE growth pressure on the morphology, compensation, and doping of GaN and related alloys. J. Electron. Mater. 29, 21 (2000).
76. Wang, K., Pavlidis, D., and Singh, J.: Initial stages of GaN/GaAs(100) growth by metalorganic chemical vapor deposition. J. Appl. Phys. 80, 1823 (1996).
77. Wei, C., Edgar, J., Ignatiev, C., and Chaudhuri, J.: The role of trimethylgallium flow during nucleation layer deposition in the optimization of epitaxial GaN films. Thin Solid Films 360, 34 (2000).
78. Kim, K., Oh, C., Lee, K., Yang, G., Hong, C., Lim, K., and Lee, H.: Effects of growth rate of a GaN buffer on the properties of GaN on a sapphire substrate. J. Appl. Phys. 85, 8441 (1999).
79. Yang, T., Uchida, K., Mishima, T., Kasai, J., and Gotoh, J.: Control of initial nucleation by reducing the V/III ratio during the early stages of GaN growth. Phys. Status Solidi A 180, 45 (2000).
80. Gherasimova, M., Cui, G., Ren, Z., Su, J., Wang, X., Han, J., Higashimine, K., and Otsuka, H.: Heteroepitaxial evolution of AlN on GaN grown by metal-organic chemical vapor deposition. J. Appl. Phys. 95, 2921 (2004).
81. Feng, Y., Wei, H., Yang, S., Chen, Z., Wang, L., Kong, S., Zhao, G., and Liu, X.: Competitive growth mechanisms of AlN on Si (111) by MOVPE. Sci. Rep. 4, 6416 (2014).
82. Krishnan, B., Lee, S., Li, H., Su, J., Lee, D., and Paranjpe, A.: Growth of AlxGa1−xN structures on 8 in. Si (111) substrates. Sens. Mater. 25, 205 (2013).

Keywords

Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor

  • Jie Su (a1), Eric A. Armour (a1), Balakrishnan Krishnan (a1), Soo Min Lee (a1) and George D. Papasouliotis (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed