Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T09:10:28.621Z Has data issue: false hasContentIssue false

Strain rate dependence of anisotropic compression behavior in porous iron with unidirectional pores

Published online by Cambridge University Press:  31 January 2011

Tae Kawashima
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
Hidetoshi Kobayashi
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
Hideo Nakajima
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
Get access

Abstract

The strain rate dependence of anisotropic compression behavior in porous iron with cylindrical pores oriented in one direction was investigated. Through high strain rate (˜103 s−1) compression tests along the orientation direction of pores using the split Hopkinson pressure bar method, it was shown that the stress–strain curve exhibits a unique plateau-stress region where deformation proceeds with almost no stress increase. The appearance of the plateau-stress region is related to the buckling deformation of the iron matrix and provides superior energy absorption. However, for the middle (˜10−1 s−1) and low strain rates (˜10−4 s−1), compression along the same direction produces no such plateau region. In fact, in contrast to compression in the parallel direction, compression perpendicular to the orientation direction of pores produces no plateau-stress regions in any of the three strain rates.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.Metal Foams: A Design Guide (Butterworth-Heinemann, Burlington 2000)Google Scholar
2.Gibson, L.J., Ashby, M.F.Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, New York 1997)CrossRefGoogle Scholar
3.Banhart, J.Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559 (2001)CrossRefGoogle Scholar
4.Wang, Z.H., Ma, H.W., Zhao, L.M., Yang, G.T.Studies on the dynamic compressive properties of open-cell aluminum alloy foams. Scr. Mater. 54, 83 (2006)CrossRefGoogle Scholar
5.Mukai, T., Miyoshi, T., Nakano, S., Somekawa, H., Higashi, K.Compressive response of a closed-cell aluminum foam at high strain rate. Scr. Mater. 54, 533 (2006)CrossRefGoogle Scholar
6.Zhao, H., Elnasri, I., Abdennadher, S.An experimental study on the behavior under impact loading of metallic cellular materials. Int. J. Mech. Sci. 47, 757 (2005)CrossRefGoogle Scholar
7.Montanini, R.Measurement of strain rate sensitivity of aluminium foams for energy dissipation. Int. J. Mech. Sci. 47, 26 (2005)CrossRefGoogle Scholar
8.Paul, A., Ramamurty, U.Strain rate sensitivity of a closed-cell aluminum foam. Mater. Sci. Eng., A 281, 1 (2000)CrossRefGoogle Scholar
9.Han, F.S., Cheng, H.F., Li, Z.B., Wang, Q.The strain rate effect of an open cell aluminum foam. Metall. Mater. Trans. A 36, 645 (2005)CrossRefGoogle Scholar
10.Deshpande, V.S., Fleck, N.A.High strain rate compressive behavior of aluminium alloy foams. Int. J. Impact Eng. 24, 277 (2000)CrossRefGoogle Scholar
11.Yi, F., Zhu, Z.G., Hu, S.S., Yi, P., He, L.H., Ning, T.Dynamic compressive behavior of aluminum alloy foams. J. Mater. Sci. Lett. 20, 1667 (2001)CrossRefGoogle Scholar
12.Zhang, Y.F., Tang, Y.Z., Zhou, G., Wei, J.N., Han, F.S.Dynamic compression properties of porous aluminum. Mater. Lett. 56, 728 (2002)CrossRefGoogle Scholar
13.Sugimura, Y., Meyer, J., He, M.Y., Bart-Smith, H., Grenstedt, J., Evans, A.G.On the mechanical performance of closed cell Al alloy foams. Acta Mater. 45, 5245 (1997)CrossRefGoogle Scholar
14.Matijasevic-Lux, B., Banhart, J., Fiechter, S., Görke, O., Wanderka, N.Modification of titanium hydride for improved aluminium foam manufacture. Acta Mater. 54, 1887 (2006)CrossRefGoogle Scholar
15.Shapovalov, V.Porous metals. MRS Bull. 19, 24 (1994)CrossRefGoogle Scholar
16.Liu, Y., Li, Y., Zhang, H.Fabrication of lotus-structured porous magnesium with Gasar process. Acta Metall. Sinica 40, 1121 (2004)Google Scholar
17.Knacke, O., Probst, H., Wernekinck, J.On blow-hole formation during solidification of silver melts containing oxygen and copper melts containing oxygen and sulphur. Z. Metallkd. 70, 1 (1979)Google Scholar
18.Nakajima, H.Fabrication, properties and application of porous metals with directional pores. Prog. Mater. Sci. 52, 1091 (2007)CrossRefGoogle Scholar
19.Nakajima, H., Hyun, S.K., Ohashi, K., Ota, K., Murakami, K.Fabrication of porous copper by unidirectional solidification under hydrogen and its properties. Colloids Surf., A 179, 209 (2001)CrossRefGoogle Scholar
20.Hyun, S.K., Murakami, K., Nakajima, H.Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification. Mater. Sci. Eng., A 299, 241 (2001)CrossRefGoogle Scholar
21.Tane, M., Ichitsubo, T., Hyun, S.K., Nakajima, H.Anisotropic yield behavior of lotus-type porous iron: Measurements and micromechanical mean-field analysis. J. Mater. Res. 20, 135 (2005)CrossRefGoogle Scholar
22.Tane, M., Ichitsubo, T., Nakajima, H., Hyun, S.K., Hirao, M.Elastic properties of lotus-type porous iron: Acoustic measurement and extended effective-mean-field theory. Acta Mater. 52, 5195 (2004)CrossRefGoogle Scholar
23.Hyun, S.K., Nakajima, H.Anisotropic compressive properties of porous copper produced by unidirectional solidification. Mater. Sci. Eng., A 340, 258 (2003)CrossRefGoogle Scholar
24.Kolsky, H.An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. London, Sect. B 62, 676 (1949)CrossRefGoogle Scholar
25.daSilva, M.G., Ramesh, K.T.The rate-dependent deformations of porous pure iron. Int. J. Plast. 13, 587 (1997)CrossRefGoogle Scholar
26.Weston, G.M.Flow-stress of shock-hardened Remco iron over strain rates from 0.001 to 9000 s−1. J. Mater. Sci. Lett. 11, 1361 (1992)CrossRefGoogle Scholar
27.Ikeda, T., Aoki, T., Nakajima, H.Fabrication of Lotus-type porous stainless steel by continuous zone melting technique and mechanical property. Metall. Mater. Trans. A 36, 77 (2005)CrossRefGoogle Scholar
28.Ogawa, K.Impact strength of aged β-titanium alloy (Ti–15V–3Cr–3Sn–3Al). J. Soc. Mater. Sci., Jpn. 46, 118 (1997)CrossRefGoogle Scholar
29.Ide, T., Tane, M., Ikeda, T., Hyun, S.K., Nakajima, H.Compressive properties of lotus-type porous stainless steel. J. Mater. Res. 21, 185 (2006)CrossRefGoogle Scholar
30.Meyers, M.A., Benson, D.J., Vöhringer, O., Kad, B.K., Xue, Q., Fu, H.H.Constitutive description of dynamic deformation: Physically-based mechanisms. Mater. Sci. Eng., A 322, 194 (2002)CrossRefGoogle Scholar
31.Taylor, G.Thermally-activated deformation of BCC metals and alloys. Prog. Mater. Sci. 36, 29 (1992)CrossRefGoogle Scholar
32.Bart-Smith, H., Bastawros, A.F., Mumm, D.R., Evans, A.G., Sypeck, D.J., Wadley, H.N.G.Compressive deformation and yielding mechanisms in cellular Al alloys determined using x-ray tomography and surface strain mapping. Acta Mater. 46, 3583 (1998)CrossRefGoogle Scholar
33.Ruan, D., Lu, G., Wang, B., Yu, T.X.In-plane dynamic crushing of honeycombs—A finite element study. Int. J. Impact Eng. 28, 161 (2003)CrossRefGoogle Scholar
34.Zhang, J., Ashby, M.F.The out-of-plane properties of honeycombs. Int. J. Mech. Sci. 34, 475 (1992)CrossRefGoogle Scholar