Skip to main content Accessibility help

The stability, mechanical properties, electronic structures and thermodynamic properties of (Ti, Nb)C compounds by first-principles calculations

  • Shuting Sun (a1), Hanguang Fu (a1), Jian Lin (a1), Gencai Guo (a1), Yongping Lei (a1) and Ruzhi Wang (a1)...


First principles was carried out studying the properties of (Ti, Nb)C compounds based on density functional theory. The integration of mechanical behavior, electronic structures, and thermodynamic properties can be optimized by mediating the concentration of the titanium alloying element. The results revealed that these transition metal compounds were stable with the negative formation energy. Nb0.5Ti0.5C (29.15 GPa) demonstrated the largest hardness characterized by moduli (B, G) because of the stable shell configuration. NbC exhibited the strongest anisotropy from the universal anisotropic index (A U) and three-dimensional surface contours. Ti x Nb1−x C compounds displayed relatively strong stress responses along the [001], [110], and [111] directions. Due to the weakening pd bonding, the ideal tensile strength gradually decreased with the increasing titanium concentration. The electronic structures revealed that the bonding characteristics of the (Ti, Nb)C compounds were a mixture of metallic and covalent bonds. On the other hand, NbC and TiC exhibited a minimum (740.55 K) and maximum (919.29 K) Debye temperature, indicating the stronger metalic bonds of NbC and covalent bonds of TiC.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:


Hide All

Contributing Editor: Susan B. Sinnott



Hide All
1. Zhang, H., Zou, Y., Zou, Z., and Shi, C.: Effects of chromium addition on microstructure and properties of TiC–VC reinforced Fe-based laser cladding coatings. J. Alloys Compd. 614, 107 (2014).
2. Dubourg, L. and Archambeault, J.: Technological and scientific landscape of laser cladding process in 2007. Surf. Coat. Technol. 202, 5863 (2008).
3. Moghaddam, E.G., Karimzadeh, N., Varahram, N., and Davami, P.: Impact–abrasion wear characteristics of in situ VC-reinforced austenitic steel matrix composite. Mater. Sci. Eng., A 585, 422 (2013).
4. Lin, Y.H., Lei, Y.P., Fu, H.G., and Lin, J.: Mechanical properties and toughening mechanism of TiB2/NiTi reinforced titanium matrix composite coating by laser cladding. Mater Des. 80, 82 (2015).
5. Zhao, G.L., Huang, C.Z., Liu, H.L., Zou, B., Zhu, H.T., and Wang, J.: Preparation of in situ growth TaC whiskers toughening Al2O3 ceramic matrix composite. Int. J. Refract. Hard Met. 36, 122 (2013).
6. Lin, Y.H., Lei, Y.P., Fu, H.G., and Lin, J.: Microstructure and properties of (TiB2 + NiTi)/Ti composite coating fabricated by laser cladding. J. Mater. Eng. Perform. 24, 3717 (2015).
7. Cao, Y.B., Ren, H.T., Hu, C.S., Meng, Q.X., and Liu, Q.: In situ formation behavior of NbC-reinforced Fe-based laser cladding coatings. Mater. Lett. 147, 61 (2015).
8. Han, B., Li, M.Y., and Wang, Y.: Microstructure and wear resistance of laser clad Fe–Cr3C2 composite coating on 35CrMo steel. J. Mater. Eng. Perform. 22, 3749 (2013).
9. Wu, Q.L., Li, W.G., Zhong, N., Gang, W., and Wang, H.S.: Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate. Mater Des. 49, 10 (2013).
10. Zhang, H., Zou, Y., Zou, Z.D., and Wu, D.T.: Microstructures and properties of low-chromium high corrosion-resistant TiC–VC reinforced Fe-based laser cladding layer. J. Alloys Compd. 622, 62 (2015).
11. Wang, X.H., Zhang, M., Cheng, L., Qu, S.Y., and Du, B.S.: Microstructure and wear properties of in situ synthesized VC carbide reinforced Fe-based surface composite coating produced by laser cladding. Tribol. Lett. 34, 177 (2009).
12. Wu, C.F., Ma, M.X., Liu, W.J., Zhong, M.L., Zhang, W.M., and Zhang, H.J.: Laser producing Fe-based composite coatings reinforced by in situ synthesized multiple carbide particles. Mater. Lett. 62, 3077 (2008).
13. Srivastava, A.K. and Das, K.: Microstructure and abrasive wear study of (Ti, W)C-reinforced high-manganese austenitic steel matrix composite. Mater. Lett. 62, 3947 (2008).
14. Li, Q.T., Lei, Y.P., and Fu, H.G.: Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating. Appl. Surf. Sci. 316, 610 (2014).
15. Li, Q.T., Lei, Y.P., Fu, H.G., Wu, Z.W., and Lin, J.: Microstructure and mechanical properties of in situ (Ti, Nb)Cp/Fe-based laser composite coating prepared with different heat inputs. Rare Met. 10, 1 (2016).
16. Jang, J.H., Lee, C.H., Heo, Y.U., and Suh, D.W.: Stability of (Ti, M)C (M = Nb, V, Mo, and W) carbide in steels using first-principles calculations. Acta Mater. 60, 208 (2012).
17. Zaou, A., Kacimi, S., Boukortt, A., and Bouhafs, B.: Ab initio studies of structural, elastic and electronic properties of Zr x Nb1−x C and Zr x Nb1−x N alloys. Phys. B 405, 153 (2010).
18. Ramasubramanian, S., Rajagoplan, M., Thangavel, R., and Kumar, J.: Ab initio study on elastic and thermodynamical properties of Ti1−x Zr x C. Eur. Phys. J. B 69, 265 (2009).
19. Maouche, D., Louail, L., Ruterana, P., and Maamache, M.: Formation and stability of di-transition-metal carbides Ti x Zr1−x C, Ti x Hf1−x C and Hf x Zr1−x C. Comput. Mater. Sci. 44, 347 (2008).
20. Wang, X.H., Zhang, M., Ruan, L.Q., and Zou, Z.D.: A first-principles study on elastic properties and stability of Ti x V1−x C multiple carbide. Trans. Nonferrous Met. Soc. China 21, 1373 (2011).
21. Elliott, R.O. and Kempter, C.P.: Thermal expansion of some transition metal carbides. J. Phys. Chem. 62, 630 (1958).
22. Yogeswari, M. and Kalpana, G.: Half-metallic ferromagnetism in alkaline earth selenides by first principles calculations. Comput. Mater. Sci. 54, 219 (2012).
23. Jiang, D., Wang, Q., Hu, W., We, Z., and Tong, J.: The effect of tantalum (Ta) doping on mechanical properties of tungsten (W): A first-principles study. J. Mater. Res. 31, 3401 (2016).
24. Hua, G. and Li, D.: A first-principles study on the mechanical and thermodynamic properties of (Nb1−x Ti x )C complex carbides based on virtual crystal approximation. RSC Adv. 5, 103686 (2015).
25. Nartowski, A.M., Parkin, I.P., Mackenzie, M., and Craven, A.J.: Solid state metathesis: Synthesis of metal carbides from metal oxides. J. Mater. Chem. 11, 3116 (2001).
26. Liu, Y.Z., Jiang, Y.H., Zhou, R., and Feng, J.: First principles study the stability and mechanical properties of MC (M = Ti, V, Zr, Nb, Hf, and Ta) compounds. J. Alloys Compd. 582, 500 (2014).
27. Isaev, E.I., Simak, S.I., Abrikosov, I.A., and Ahuja, R.: Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study. J. Appl. Phys. 101, 123519 (2007).
28. Häglund, J., Fernández, G.A., Grimvall, G., and Körling, M.: Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 48, 11685 (1993).
29. Teresiak, A. and Kubsch, H.: X-ray investigations of high energy ball milled transition metal carbides. Nanostruct. Mater. 6, 671 (1995).
30. Price, D.L., Cooper, B.R., and Wills, J.M.: Full-potential linear-muffin-tin-orbital study of brittle fracture in titanium carbide. Phys. Rev. B 46, 11368 (1992).
31. Raju, S., Mohandas, E., Terrance, A.L.E., and Raghunathan, V.S.: Application of the macroscopic atom model of cohesion to structural systematics of L10 compounds. Mater. Lett. 12, 356 (1991).
32. Chong, X.Y., Jiang, Y.H., Zhou, R., and Feng, J.: First principles study the stability, mechanical and electronic properties of manganese carbides. Comput. Mater. Sci. 87, 19 (2014).
33. Luo, Y., Wang, J., Li, J., Hu, Z., and Wang, J.: Theoretical study on crystal structures, elastic stiffness, and intrinsic thermal conductivities of β-, γ-, and δ-Y2Si2O7 . J. Mater. Res. 30, 493 (2015).
34. Chen, C.Y., Xu, M., Wei, X., and Lu, H.: Multi-scale simulation of nanoindentation on cast Inconel 718 and NbC precipitate for mechanical properties prediction. Mater. Sci. Eng., A 662, 385 (2016).
35. Amriou, T., Bouhafs, B., Aourag, H., Khelifa, B., and Bresson, S.: FP-LAPW investigations of electronic structure and bonding mechanism of NbC and NbN compounds. Phys. B 325, 46 (2003).
36. Clerc, D.G. and Ledbetter, H.M.: Mechanical hardness: A semiempirical theory based on screened electrostatics and elastic shear. J. Phys. Chem. Solids 59, 1071 (1998).
37. Xiao, J., Jiang, B., Huang, K., and Zhu, H.: Structural and elastic properties of TiC x N1−x , TiC x O1−x , TiO x N1−x solid solutions from first-principles calculations. Comput. Mater. Sci. 88, 86 (2014).
38. Chen, K. and Zhao, L.: Elastic properties, thermal expansion coefficients and electronic structures of Ti0.75X0.25C carbides. J. Phys. Chem. Solids 68, 1805 (2007).
39. Gilman, J.J. and Roberts, B.W.: Elastic constants of TiC and TiB2 . J. Appl. Phys. 32, 1405 (1961).
40. Duan, Y.H., Huang, B., Sun, Y., Peng, M.J., and Zhou, S.G.: Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: A first-principles investigation. J. Alloys Compd. 590, 50 (2014).
41. Chong, X.Y., Jiang, Y.H., Zhou, R., and Feng, J.: Electronic structures mechanical and thermal properties of V–C binary compounds. RSC Adv. 4, 44959 (2014).
42. Xiao, B., Feng, J., Zhou, C.T., Jiang, Y.H., and Zhou, R.: Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides. J. Appl. Phys. 109, 083521 (2011).
43. Liu, Y.Z., Jiang, Y.H., Feng, J., and Zhou, R.: Elasticity, electronic properties and hardness of MoC investigated by first principles calculations. Phys. B 419, 45 (2013).
44. Gilman, J.J.: Why silicon is hard. Science 261, 1436 (1993).
45. Van Duysen, J.C. and Doukhan, J.C.: Room temperature microplasticity of a spodumene LiAlSi2O6 . Phys. Chem. Miner. 10, 125 (1984).
46. Liu, A.Y. and Cohen, M.L.: Prediction of new low compressibility solids. Science 245, 841 (1989).
47. Butler, J.E. and Windischmann, H.: Developments in CVD-diamond synthesis during the past decade. MRS Bull. 23, 22 (1998).
48. Chen, X.Q., Niu, H., Li, D., and Li, Y.: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275 (2011).
49. Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (2009).
50. Pierson, H.O.: Handbook of Refractory Carbides and Nitrides; Properties, Characteristics, Processing and Applications, Vol. 69 (Noyes Publication, New York, NY, 1997); p. 5.
51. Wang, C., Huang, T.L., Wang, H.Y., Xue, X.N., and Jiang, Q.C.: Effects of distributions of Al, Zn and Al + Zn atoms on the strengthening potency of Mg alloys: A first-principles calculations. Comput. Mater. Sci. 104, 23 (2015).
52. Zhou, L., Su, K., Wang, Y., Zeng, Q., and Li, Y.: First-principles study of the properties of Li, Al and Cd doped Mg alloys. J. Alloys Compd. 596, 63 (2014).
53. Hirayama, N., Iida, T., Morioka, S., Sakamoto, M., Nishio, K., Kogo, Y., Takanashi, Y., and Hamada, N.: First-principles investigation of structural, electronic, and thermoelectric properties of n- and p-type Mg2Si. J. Mater. Res. 30, 2564 (2015).
54. Tian, Y. and Wu, P.: First-principles study of structural, elastic and thermodynamic properties of Ni–Sn–P intermetallics. J. Mater. Res. 32, 512 (2017).
55. Xiang, H., Feng, Z., and Zhou, Y.: Mechanical and thermal properties of Yb2SiO5: First-principles calculations and chemical bond theory investigations. J. Mater. Res. 29, 1609 (2014).
56. Wang, B., Liu, Y., and Ye, J.W.: First-principle calculations of elastic, electronic and thermodynamic properties of TiC under high pressure. Acta Phys. Sin. 61, 186501 (2012).
57. Liu, Y.Z., Xing, J.D., Fu, H.G., Li, Y.F., Sun, L., and Zheng, L.: Structural stability, mechanical properties, electronic structures and thermal properties of XS (X = Ti, V, Cr, Mn, Fe, Co, Ni) binary compounds. Phys. Lett. A 381, 2048 (2017).
58. Chong, X.Y., Jiang, Y.H., Zhou, R., and Feng, J.: Multialloying effect on thermophysical properties of Cr7C3-type carbides. J. Am. Ceram. Soc. 100, 1588 (2017).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed