Skip to main content Accessibility help

Sr(Zn1/3Nb2/3)O3-induced R3c to P4bm transition and large field-induced strain in 0.80(Bi0.5Na0.5)TiO3–0.20SrTiO3 ceramics

  • Qiumei Wei (a1), Mankang Zhu (a1), Mupeng Zheng (a1) and Yudong Hou (a1)


Bi0.5Na0.5TiO3 (BNT)-based lead-free materials are important for piezoelectric actuator, and several researchers have studied the effect of B-site complex ion doping on strain in (Bi0.5Na0.5)TiO3–SrTiO3. In this work, a paraelectric perovskite Sr(Zn1/3Nb2/3)O3 (SZN) with B-site complex structure was introduced into 0.80(Bi0.5Na0.5)TiO3–0.20SrTiO3 (BNTST) to investigate the phase structure and electrical properties as well as the field-induced strain behavior. The results showed that SZN substitution decreases the rhombohedrality 90-γ and induces the transition from dominant ferroelectric to nonergodic relaxor by shifting its TF-R to lower temperatures. Moreover, the field-induced ferroelectric domains cannot remain stable at room temperature when SZN substitution is large than 1.0 mol%. These behaviors induced the transition between nonergodic relaxor and ergodic relaxor, which contributed to its large strain and related properties. In this work, this material gave the largest bipolar strain of 0.43% and large normalized unipolar strain of 505 pm/V at the SZN content of 2 mol% under 8 kV/mm, and showed good temperature stability up to 100 °C. The above encouraging results may be helpful for further investigation of BNTST-based ternary systems in search of a potential Pb-free piezoelectric material.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Zhu, Y., Zhang, Y., Xie, B., Fan, P., Marwat, M.A., Ma, W., Wang, C., Yang, B., Xiao, J., and Zhang, H.: Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3–0.24SrTiO3 lead-free piezoceramics. Ceram. Int. 44, 7851 (2018).
2.Guo, Y., Fan, H., and Shi, J.: Origin of the large strain response in tenary SrTi0.8Zr0.2O3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoceramics. J. Mater. Sci. 50, 403 (2015).
3.Rödel, J., Webber, K.G., Dittmer, R., Jo, W., Kimura, M., and Damjanovic, D.: Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659 (2015).
4.Muramatsu, H., Nagata, H., and Takenaka, T.: Quenching effects for piezoelectric properties on lead-free (Bi1/2Na1/2)TiO3 ceramics. Jpn. J. Appl. Phys. 55, 10TB07 (2016).
5.Wei, Q., Zhu, M., Li, L., Guo, Z., Zheng, M., and Hou, Y.: Large electric field induced strain in new lead-free binary (Bi1/2Na1/2)TiO3–Ba(Zn1/3Nb2/3)O3 solid solution. J. Alloys Compd. 731, 631 (2018).
6.Luo, L., Jiang, X., Zhang, Y., and Li, K.: Electrocaloric effect and pyroelectric energy harvesting of (0.94 − x)Na0.5Bi0.5TiO3–0.06BaTiO3xSrTiO3 ceramics. J. Eur. Ceram. Soc. 37, 2803 (2017).
7.Chen, J., Wang, Y., Zhang, Y., Yang, Y., and Jin, R.: Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3. J. Eur. Ceram. Soc. 37, 2365 (2017).
8.Fan, P., Zhang, Y., Xie, B., Zhu, Y., Ma, W., Wang, C., Yang, B., Xu, J., Xiao, J., and Zhang, H.: Large electric-field-induced strain in B-site complex-ion (Fe0.5Nb0.5)4+-doped Bi1/2(Na0.82K0.12)1/2TiO3 lead-free piezoceramics. Ceram. Int. 44, 3211 (2017).
9.Goldstein, A., Krell, A., and Kleebe, A.: Transparent ceramics at 50: Progress made and further prospects. J. Am. Ceram. Soc. 99, 3173 (2016).
10.Liu, L., Shi, D., Knapp, M., Ehrenberg, H., Fang, L., and Chen, J.: Large strain response based on relaxor-antiferroelectric coherence in (Bi0.5Na0.5)TiO3–SrTiO3–(K0.5Na0.5)NbO3 solid solutions. J. Appl. Phys. 116, 184104 (2014).
11.Hiruma, Y., Imai, Y., Watanabe, Y., Nagata, H., and Takenaka, T.: Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl. Phys. Lett. 92, 262904 (2008).
12.Liu, N., Acosta, M., Wang, S., Xu, B.X., Stark, R.W., and Dietz, C.: Revealing the core-shell interactions of a giant strain relaxor ferroelectric 0.75Bi1/2Na1/2TiO3–0.25SrTiO3. Sci. Rep. 6, 36910 (2016).
13.Koruza, J., Rojas, V., Molina-Luna, L., Kunz, U., Duerrschnabel, M., Kleebe, H-J., and Acosta, M.: Formation of the core–shell microstructure in lead-free Bi1/2Na1/2TiO3–SrTiO3 piezoceramics and its influence on the electromechanical properties. J. Eur. Ceram. Soc. 36, 1009 (2016).
14.Li, H.L., Liu, Q., Zhou, J.J., Wang, K., Li, J.F., Liu, H., and Fang, J.Z.: Grain size dependent electrostrain in Bi1/2Na1/2TiO3–SrTiO3 incipient piezoceramics. J. Eur. Ceram. Soc. 36, 2849 (2016).
15.Tong, X-Y., Li, H-L., Zhou, J-J., Liu, H., and Fang, J-Z.: Giant electrostrain under low driving field in Bi1/2Na1/2TiO3–SrTiO3 ceramics for actuator applications. Ceram. Int. 42, 16153 (2016).
16.Cho, J.H., Park, J.S., Kim, S.W., Jeong, Y.H., Yun, J.S., Park, W.I., Hong, Y.W., and Paik, J.H.: Ferroelectric properties and core shell domain structures of Fe-modified 0.77Bi0.5Na0.5TiO3–0.23SrTiO3 ceramics. J. Eur. Ceram. Soc. 37, 3313 (2017).
17.Dhifallah, N., Turki, O., Marssi, M.E., Dammak, M., and Khemakhem, H.: Structural and relaxor behavior in lead-free (Ba0.8Sr0.2)Ti1−x(Zn1/3Nb2/3)xO3 ceramics. Ceram. Int. 42, 6657 (2016).
18.Malik, R.A., Hussain, A., Zaman, A., Maqbool, A., Rahman, J.U., Song, T.K., Kimc, W-J., and Kim, M-H.: Structure-property relationship in lead-free A- and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3–SrTiO3 incipient piezoceramics. RSC Adv. 5, 96953 (2015).
19.Hao, J., Li, W., Zhai, J., and Chen, H.: Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng., R 135, 1 (2019).
20.Dorcet, V., Trolliard, G., and Boullay, P.: Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhombohedral to orthorhombic phase transition. Chem. Mater. 20, 5061 (2008).
21.Ge, W., Devreugd, C.P., Phelan, D., Zhang, Q., Ahart, M., Li, J., Luo, H., Boatner, L.A., Viehland, D., and Gehring, P.M.: Lead-free and lead-based ABO3 perovskite relaxors with mixed-valence A-site and B-site disorder: Comparative neutron scattering structural study of (Na1/2Bi1/2)TiO3 and Pb(Mg1/3Nb2/3)O3. Phys. Rev. B 88, 174115 (2013).
22.Ohwada, K., Hirotal, K., Rehrig, W., Gehring, M., Noheda, B., Fujii, Y., Park, S., and Shirane, G.: Neutron diffraction study of the irreversible R–MA–MC phase transition in single crystal Pb[(Zn1/3Nb2/3)1−xTix]O3. J. Phys. Soc. Jpn. 70, 2778 (2001).
23.Eitel, R.E., Zhang, S.J., Shrout, T.R., Randall, C.A., and Levin, I.: Phase diagram of the perovskite system (1 − x)BiScO3xPbTiO3. J. Appl. Phys. 96, 2828 (2004).
24.Shi, J., Fan, H., Liu, X., Bell, A.J., and Rödel, J.: Large electrostrictive strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 solid solutions. J. Am. Ceram. Soc. 97, 848 (2014).10.1111/jace.12712
25.Howard, C.J. and Stokes, H.T.: Octahedral tilting in cation-ordered perovskites—A group-theoretical analysis. Acta Crystallogr., Sect. B: Struct. Sci. 60, 674 (2004).
26.Ma, C., Guo, H., Beckman, S.P., and Tan, X.: Creation and destruction of morphotropic phase boundaries through electrical poling: A case study of lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoelectrics. Phys. Rev. Lett. 109, 107602 (2012).
27.Hao, J., Bai, W., Li, W., Shen, B., and Zhai, J.: Phase transitions, relaxor behavior, and large strain response in LiNbO3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics. J. Appl. Phys. 114, 113 (2013).
28.Otoničar, M., Škapin, S.D., Jančar, B., Ubic, R., and Suvorov, D.: Analysis of the phase transition and the domain structure in K0.5Bi0.5TiO3 perovskite ceramics by in situ XRD and TEM. J. Am. Ceram. Soc. 93, 4168 (2010).
29.Dittmer, R., Gobeljic, D., Jo, W., Shvartsman, V.V., Lupascu, D.C., Jones, J.L., and Rödel, J.: Ergodicity reflected in macroscopic and microscopic field-dependent behavior of BNT-based relaxors. J. Appl. Phys. 115, 084111 (2014).
30.Lerner, S.E., Mierzwa, M., Paluch, M., Feldman, Y., and Ishai, P.B.: Dielectric relaxation in weakly ergodic dilute dipole systems. J. Chem. Phys. 138, 204501 (2013).
31.Li, L., Zhu, M., Wei, Q., Zheng, M., Hou, Y., and Hao, J.: Ferroelectric P4mm to relaxor P4bm transition and temperature-insensitive large strains in Bi(Mg0.5Ti0.5)O3–modified tetragonal 0.875Bi0.5Na0.5TiO3–0.125BaTiO3 lead-free ferroelectric ceramics. J. Eur. Ceram. Soc. 38, 1381 (2018).
32.Rödig, T., Schönecker, A., and Gerlach, G.: A survey on piezoelectric ceramics for generator applications. J. Am. Ceram. Soc. 93, 901 (2010).
33.Khan, M.A., Nadeem, M.A., and Idriss, H.: Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review. Surf. Sci. Rep. 71, 1 (2016).
34.Zhao, W., Zuo, R., Fu, J., and Shi, M.: Large strains accompanying field-induced ergodic phase-polar ordered phase transformations in Bi(Mg0.5Ti0.5)O3–PbTiO3–(Bi0.5Na0.5)TiO3 ternary system. J. Eur. Ceram. Soc. 34, 2299 (2014).
35.Viola, G., Mckinnon, R., Koval, V., Adomkevicius, A., Dunn, S., and Yan, H.: Lithium-induced phase transitions in lead-free (Bi0.5Na0.5)TiO3 based ceramics. J. Phys. Chem. C 118, 8564 (2014).
36.Han, H.S., Jo, W., Rodel, J., Hong, I.K., Tai, W.P., and Lee, J.S.: Coexistence of ergodicity and nonergodicity in LaFeO3-modified (Bi1/2Na0.78K0.22)1/2TiO3 relaxors. J. Phys.: Condens. Matter 24, 365901 (2012).
37.Ma, D., Chen, X., Huang, G., Chen, J., Zhou, H., and Fang, L.: Temperature stability, structural evolution and dielectric properties of BaTiO3–Bi(Mg2/3Ta1/3)O3 perovskite ceramics. Ceram. Int. 41, 7157 (2015).
38.Karthik, T., Radhakrishanan, D., Narayana, C., and Asthana, S.: Nature of electric field driven ferroelectric phase transition in lead-free (Na1/2Bi1/2)TiO3: In situ temperature dependent ferroelectric hysteresis and Raman scattering studies. J. Alloys Compd. 732, 945 (2018).
39.Zheng, T., Wu, J., Xiao, D., and Zhu, J.: Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552 (2018).
40.West, D.L. and Payne, D.A.: Preparation of 0.95Bi1/2Na1/2TiO3·0.05BaTiO3 ceramics by an aqueous citrate-gel route. J. Am. Ceram. Soc. 86, 192 (2003).
41.Fu, J. and Zuo, R.: Giant electrostrains accompanying the evolution of a relaxor behavior in Bi(Mg, Ti)O3–PbZrO3–PbTiO3 ferroelectric ceramics. Acta Mater. 61, 3687 (2013).
42.Fang, Y-C. and Jean, J-H.: Compositional design of lead-free, low-temperature cofired ceramic dielectric composite. Jpn. J. Appl. Phys. 45, 6357 (2006).
43.Lu, D., Dong, Y., Liu, Q., Huang, H., Han, D., Zhang, L., and Meng, L.: Difference of XRD spectrum between ceramic bulk and its powder. J. Jilin Inst. Chem. Technol. 29, 1 (2012).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed