Skip to main content Accessibility help
×
Home

Sputter deposition of a corrosion-resistant amorphous metallic coating

  • Natalia L. Lee (a1), Galen B. Fisher (a1) and Robert Schulz (a1)

Abstract

Starting with corrosion-resistant amorphous Fe32Ni36Cr14P12B6 alloy material, rf sputter deposition has been successfully used to deposit amorphous thin films very similar in composition onto low-carbon (i.e., 1008) steel. The effects that varying sputter deposition parameters has on a film's corrosion resistance, microstructure, and chemical composition have been examined. Optical, scanning, and transmission electron microscopy, Auger depth profiling, and x-ray diffraction were used to characterize the microstructure and composition of the films, while the corrosion resistance was determined by anodic polarization in basic and acidic solutions. A ∼4000 Å thick amorphous film sputtered at ambient temperature onto a 0.05 μm polished 1008 steel substrate improved the corrosion resistance of the steel in a buffered borate solution by lowering the steel's critical current density by two orders of magnitude and by raising its corrosion potential by ∼0.4 V. Bias voltage sputtering was required to produce a film with properties that could withstand a sulfuric acid solution. For example, a film sputtered at – 70 V at ambient temperature onto a steel substrate passivated in sulfuric acid solution, whereas the steel was completely active in this solution without the sputtered film. Passive current densities in this case were ∼2x102μA/cm2. In both solutions the improved corrosion resistance was exhibited by films with lower oxygen content and a denser microstructure. Thus a direct correlation between corrosion resistance, microstructure, and composition is shown.

Copyright

References

Hide All
1Thornton, J. A.J. Vac. Sci. Technol. 11, 666 (1974).
2Westwood, W. D., Prog. Surf. Sci. 7, 71 (1976).
3Craig, S. and Harding, G. L., J. Vac. Sci. Technol. 19, 205 (1981).
4Brophy, J. H., Rose, R. M., and Wulff, J., The Structure and Properties of Materials (Wiley, New York, 1964), Vol. 2.
5O'Korie, B. A. and Nowak, W. B., J. Electrochem. Soc. 130, 290 (1983).
6Kulik, T., Baszkiewicz, J., Karainski, M., Latuszkiewicz, J., and Matyja, H., Corros. Sci. 19, 1001 (1979).
7Devine, T. M., J. Electrochem. Soc. 124, 38 (1977).
8Chance, R. L. and Ceselli, R. G., General Motors Research Laboratories Publication GMR-4139 (July 1982).
9Nowak, W. B. and Okorie, B. A., Corrosion 38(6), 314 (1982).
10Okorie, B. A. and Nowak, W. B., J. Electrochem. Soc. 130(2), 290 (1983).
11Diegle, R. B. and Merz, M. D., J. Electrochem. Soc. 130(9), 2030 (1980).
12Diegle, R. B., Lineman, D. M., and Boyd, W. K., Interim Technical Report, Office of Naval Research Contract No. 0014–77-C-0488, Battelle Columbus Laboratories, Columbus, Ohio, 1 May 1977-30 April 1978.
13Rosenblum, M. P. and Turnbull, D., J. Non-Cryst. Solids 37 (1980).
14Chopra, K. L., Thin Film Phenomena (McGraw-Hill, New York, 1969).
15Kim, J. J., Diss. Abstr. Int. B 47, 180 (1987).
16Williams, R. M., Thakoor, A. P., Khana, S. K., and Johnson, W. L., J. Electrochem. Soc. 131, 2791 (1984).
17Thakoor, A. P., Khanna, S. K., Williams, R. M., and Landel, R. F., J. Vac. Sci. Technol. A 1, 520 (1983).
18Aranson, A. J., Chen, D., and Class, W. H., Thin Solid Films 72(3), 535 (1980).
19Fabis, P. M., Thin Solid Films 128 (1-2), 57 (1985).
20Aubert, A., Danroc, J., Gaucher, A., and Terrat, J. P., Thin Solid Films 126 (1-2), 61 (1985).
21Thakoor, A. P., Lamb, J. L., Williams, R. M., and Khanna, S. K.,J. Vac. Sci. Technol. A 3(3), 600 (1985).
22Johansson, B. O., Sundgren, J. E., Green, J. E., Rockett, A., and Barnett, A., J. Vac. Sci. Technol. A 3(2), 303 (1985).
23Walmsley, R. G., Lee, Y. S., Marshall, A. F., and Stevenson, D. A., J. Non-Cryst. Solids 60-62, 625 (1984).
24Thornton, J. A., Surf. Eng. 2(4), 283 (1986).
25Ogura, K. and Majima, T., Electrochim. Acta. 23, 1361 (1978).
26Schulz, R., Lee, N. L., and Clemens, B. M., J. Mater. Res. 2, 46 (1987).
27Vossen, J. L., J. Vac. Sci. Technol. 8, 512 (1971).
28Vossen, J. L. and O'Neill, J. J. Jr. , RCA Rev. 29, 566 (1968).
29Messier, R. and Ross, R. C., J. Appl. Phys. 53, 6220 (1982).
30Barna, A., Barna, P. B., Bodo, Z., Pocza, J. F., Pozsgai, I., and Radnoczi, G., in Amorphous and Liquid Semiconductors (Taylor and Francis, London, 1974), p. 109.
31Dirks, A. G. and Leamy, H. J., Thin Solid Films 47, 219 (1977).
32Galeener, F. L., Phys. Rev. Lett. 27, 1716 (1971).
33Fuhs, W., Heese, H. J., and Langer, K. H., in Amorphous and Liquid Semiconductors (Taylor and Francis, London, 1974), p. 79.
34Staudinger, A. and Nakahara, S., Thin Solid Films 45, 125 (1977).
35Hauser, J. J. and Staudinger, A., Phys. Rev. B 8, 607 (1973).
36Roy, R. A. and Messier, R., J. Vac. Sci. Technol. 2, 312 (1984).
37Knights, J. C. and Lujan, R. A., Appl. Phys. Lett. 35, 244 (1979).
38Thornton, J. A., J. Vac. Sci. Technol. 11, 66 (1974).
39Thornton, J. A., Thin Solid Films 40, 335 (1977).
40Marinov, M., Thin Solid Films 46, 267 (1977).
41Eser, E., Ogilvie, R. E., and Taylor, K. A., Thin Solid Films 67, 265 (1980).
42Sundgren, J. E., Johansson, B. O., Hentzell, H. T. G., and Karlsson, S. E., Thin Solid Films 105, 385 (1983).
43Bland, R. D., Kominiak, G. J., and Mattox, D. M., J. Vac. Sci. Technol. 11, 671 (1974).
44Mattox, D. M. and Kominiak, G. J., J. Vac. Sci. Technol. 9, 528 (1972).

Sputter deposition of a corrosion-resistant amorphous metallic coating

  • Natalia L. Lee (a1), Galen B. Fisher (a1) and Robert Schulz (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed