Skip to main content Accessibility help

Spectral emittance of resistively heated oxidized ZrB2–30 mol% SiC

  • Gregg Van Laningham (a1), Yolande Berta (a1) and Robert F. Speyer (a1)


Normal spectral intensities of resistively heated preoxidized ZrB2–30 mol% SiC–6 mol% B4C specimens were measured in the 1–6 μm and ∼1100–1500 °C ranges. Using Wein’s displacement law, the temperatures of these specimens were determined, in turn permitting calculation of normal spectral emittances using Planck’s law. Spectral emittance data were affected by absorption/emission of H2O/CO2 gases; total emittances were determined from the averages of data in spectral ranges devoid of gaseous interference. Total emittances decreased from 1.0 at 1100 °C to 0.8 at 1500 °C. This trend is consistent with the behavior expected of a dielectric coating.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Incropera, F.P. and DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, 5th ed. (John Wiley and Sons, New York, 2002).
2.Touloukian, Y.S.: Thermophysical Properties of Matter: The TPRC Data Series; A Comprehensive Compilation of data (IFI/Plenum, New York, 1970).
3.Siegel, R. and Howell, J.R.: Thermal Radiation Heat Transfer, 4th ed. (Taylor and Francis, New York, 2002).
4.Modest, M.F.: Radiative Heat Transfer (McGraw-Hill, Inc., Heightstown, NJ, 1993).
5.Brannon, R.R. Jr. and Goldstein, J.R.: Emittance of oxide layers on a metal substrate. J. Heat Transfer 92(2), 257263 (1970).
6.Clark, H.E. and Moore, D.G.: A rotating cylinder method for measuring normal spectral emittance of ceramic oxide specimens from 1200 to 1600 K. J. Res. Nat. Bur. Stand. Phys. Chem. 70A(5), 393415 (1966).
7.ASTM Standard E423-71 (2008): Standard Test Method for Normal Spectral Emittance at Elevated Temperatures of Nonconducting Specimens (ASTM International, West Conshohocken, PA, 2008).
8.Noguchi, T. and Kozuka, T.: Temperature and emissivity measurement at 0.65 μm with a solar furnace. Sol. Energy 10(3), 125131 (1966).
9.Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, W., and Talmy, I.: HUTCs: Ultra-high temperature ceramic materials for extreme environment applications. Electrochem. Soc. Interface 16(4), 3036 (2007).
10.Paul, A., Jayaseelan, D.D., Venugopal, S., Zapata-Solvas, E., Binner, J., Vaidhyanathan, B., Heaton, A., Brown, P., and Lee, W.E.: UHTC composites for hypersonic applications. Am. Ceram. Soc. Bull. 91(1), 2228 (2012).
11.Karlsdottir, S.N. and Halloran, J.W.: Rapid oxidation characterization of ultra-high temperature ceramics. J. Am. Ceram. Soc. 90(10), 32333238 (2007).
12.Scatteia, L., Alfano, D., Monteverde, F., Sans, J., and Balat-Pichelin, M.: Effect of the machining method on the catalycity and emissivity of ZrB2 and ZrB2-HfB2-based ceramics. J. Am. Ceram. Soc. 91(5), 14611468 (2008).
13.Scatteia, L., Cooosentino, G., Cantoni, S., Balat-Pichelin, M., Beche, E., and Sans, J.L.: An investigation upon the catalytic and radiative behaviors of ZrB2-SiC ultra high temperature ceramic composites, in Proceedings 5th European Workshop on Thermal Protection Systems and Hot Structures, Noordwijk, The Netherlands, 1719, May 2006.
14.Meng, S., Chen, H., Hu, J., and Wang, Z.: Radiative properties characterization of ZrB2-SiC-based ultrahigh temperature ceramic at high temperature. Mater. Des. 32, 377381 (2011).
15.Zapadaeva, T.E., Nikolaeva, E.E., Ordan’yan, S.S., and Petrov, V.A.: Emissivity and specific electrical resistivity of compositions in the LaB6-ZrB2 System. Sov. Powder Metall. Met. Ceram. 26(7), 581583 (1987).
16.Peng, F. and Speyer, R.F.: Effect of SiC, TaB2 and TaSi2 additives on the isothermal oxidation resistance of fully dense zirconium diboride. J. Mater. Res. 24(5), 18551867 (2009).
17.Peng, F., Van Laningham, G., and Speyer, R.F.: Thermogravimetric analysis of the oxidation resistance of ZrB2-SiC and ZrB2-SiC-TaB2-based compositions in the 1900°C range. J. Mater. Res. 26(1), 96107 (2011).
18.Raytheon Vision Systems: Infrared Wall Chart (Raytheon Vision Systems, Goleta, CA, 2012).

Spectral emittance of resistively heated oxidized ZrB2–30 mol% SiC

  • Gregg Van Laningham (a1), Yolande Berta (a1) and Robert F. Speyer (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed