Skip to main content Accessibility help
×
Home

Spatial localization of Mms6 during biomineralization of Fe3O4 nanocrystals in Magnetospirillum magneticum AMB-1

  • Zachery Oestreicher (a1), Eric Mumper (a2), Carol Gassman (a3), Dennis A. Bazylinski (a4), Steven K. Lower (a5) and Brian H. Lower (a6)...

Abstract

Magnetotactic bacteria mineralize nanometer-size crystals of magnetite (Fe3O4) through a series of protein-mediated reactions that occur inside of organelles called magnetosomes. Mms6 is a transmembrane protein thought to play a key role in magnetite mineralization. We used both electron and fluorescent microscopy to examine the subcellular location of Mms6 protein within single cells of Magnetospirillum magneticum AMB-1 using Mms6-specific antibodies. We also purified magnetosomes from M. magneticum to determine if Mms6 was physically attached to magnetite crystals. Our results show that Mms6 proteins are present during crystal growth, and Mms6 is found in direct contact with the magnetite crystals or within the lipid/protein membrane surrounding the magnetite crystals. Mms6 was not detected at other subcellular locations within the bacteria or isolated fractions. Because Mms6 was found to completely surround the magnetosomes rather than being localized to one specific area of the magnetosome, it appears that this protein could act on the entire magnetite crystal during the biomineralization process. This supports a model in which Mms6 functions to regulate Fe3O4 crystal morphology. This knowledge is important for future in vitro experiments utilizing Mms6 to synthesize tailored nanomagnets with specific physical or magnetic properties.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: Lower.30@osu.edu

References

Hide All
1. Tartaj, P., Morales, M.P., Gonzalez-Carreno, T., Veintemillas-Verdaguer, S., and Serna, C.J.: Advances in magnetic nanoparticles for biotechnology applications. J. Magn. Magn. Mater. 290, 28 (2005).
2. Matsunaga, T. and Arakaki, A.: Molecular bioengineering of bacterial magnetic particles for biotechnological applications. In Magnetoreception and Magnetosomes in Bacteria, Schuler, D. ed.; Springer: New York, 2007; p. 227254.
3. Prozorov, T., Palo, P., Wang, L., Nilsen-Hamilton, M., Jones, D., Orr, D., Mallapragada, S.K., Narasimhan, B., Canfield, P.C., and Prozorov, R.: Cobalt ferrite nanocrystals: Out-performing magnetotactic bacteria. ACS Nano 1, 228 (2007).
4. Deng, Y., Qi, D., Deng, C., Zhang, X., and Zhao, D.: Superparamagnetic high-magnetization microspheres with an Fe3O4-SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 130, 28 (2008).
5. Lee, J., Lee, Y., Youn, J.K., Bin Na, H., Yu, T., Kim, H., Lee, S., Koo, Y., Kwak, J.H., Park, H.G., Chang, H.N., Hwang, M., Park, J., Kim, J., and Hyeon, T.: Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 4, 143 (2008).
6. Wang, Y., Ng, Y.W., Chen, Y., Shuter, B., Yi, J., Ding, J., Wang, S., and Feng, S.: Formulation of superparamagnetic iron oxides by nanoparticles of biodegradable polymers for magnetic resonance Imaging. Adv. Funct. Mater. 18, 308 (2008).
7. Tanaka, M., Arakaki, A., Staniland, S.S., and Matsunaga, T.: Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria. Appl. Environ. Microbiol. 76, 5526 (2010).
8. Tang, Y., Wang, D., Zhou, C., Ma, W., Zhang, Y., Liu, B., and Zhang, S.: Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther. 19, 1187 (2012).
9. Huangand, H.S. and Hainfeld, J.F.: Intravenous magnetic nanoparticle cancer hyperthermia. Int. J. Nanomed. 8, 2521 (2013).
10. Tangand, S.C.N. and Lo, I.M.C.: Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 47, 2613 (2013).
11. Li, L., Ding, J., and Xue, J.: A facile green approach for synthesizing monodisperse magnetite nanoparticles. J. Mater. Res. 25, 810 (2010).
12. Frankel, R.B., Blakemore, R.P., and Wolfe, R.S.: Magnetite in freshwater magnetotactic bacteria. Science 203, 1355 (1979).
13. Balkwill, D.L., Maratea, D., and Blakemore, R.P.: Ultrastructure of a magnetotactic spirillum. J. Bacteriol. 141, 1399 (1980).
14. Heywood, B.R., Bazylinski, D.A., Garrattreed, A., Mann, S., and Frankel, R.B.: Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria. Naturwissenschaften 77, 536 (1990).
15. Bazylinski, D.A. and Frankel, R.B.: Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217 (2004).
16. Murat, D., Quinlan, A., Vali, H., and Komeili, A.: Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl. Acad. Sci. U. S. A 107, 5593 (2010).
17. Naresh, M., Hasija, V., Sharma, M., and Mittal, A.: Synthesis of cellular organelles containing nano-magnets stunts growth of magnetotactic bacteria. J. Nanosci. Nanotechnol. 10, 4135 (2010).
18. Greenberg, M., Canter, K., Mahler, I., and Tornheim, A.: Observation of magnetoreceptive behavior in a multicellular magnetotactic prokaryote in higher than geomagnetic fields. Biophys. J. 88, 1496 (2005).
19. Ullrich, S., Kube, M., Schubbe, S., Reinhardt, R., and Schuler, D.: A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J. Bacteriol. 187, 7176 (2005).
20. Matsunaga, T., Okamura, Y., Fukuda, Y., Wahyudi, A.T., Murase, Y., and Takeyama, H.: Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp strain AMB-1. DNA Res. 12, 157 (2005).
21. Komeili, A., Vali, H., Beveridge, T.J., and Newman, D.K.: Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Natl. Acad. Sci. U. S. A. 101, 3839 (2004).
22. Lefevreand, C.T. and Wu, L.: Evolution of the bacterial organelle responsible for magnetotaxis. Trends Microbiol. 21, 534 (2013).
23. Arakaki, A., Webb, J., and Matsunaga, T.: A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem. 278, 8745 (2003).
24. Prozorov, T., Mallapragada, S.K., Narasimhan, B., Wang, L., Palo, P., Nilsen-Hamilton, M., Williams, T.J., Bazylinski, D.A., Prozorov, R., and Canfield, P.C.: Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater. 17, 951 (2007).
25. Arakaki, A., Masuda, F., Amemiya, Y., Tanaka, T., and Matsunaga, T.: Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria. J. Colloid Interface Sci. 343, 65 (2010).
26. Galloway, J.M., Arakaki, A., Masuda, F., Tanaka, T., Matsunaga, T., and Staniland, S.S.: Magnetic bacterial protein Mms6 controls morphology, crystallinity and magnetism of cobalt-doped magnetite nanoparticles in vitro. J. Mater. Chem. 21, 15244 (2011).
27. Tanaka, M., Mazuyama, E., Arakaki, A., and Matsunaga, T.: Mms6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo. J. Biol. Chem. 286, 6386 (2011).
28. Feng, S., Wang, L., Palo, P., Liu, X., Mallapragada, S.K., and Nilsen-Hamilton, M.: Integrated self-assembly of the Mms6 magnetosome protein to form an iron-responsive structure. Int. J. Mol. Sci. 14, 14594 (2013).
29. Taoka, A., Asada, R., Sasaki, H., Anzawa, K., Wu, L-F., and Fukumori, Y.: Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum . J. Bacteriol. 188, 3805 (2006).
30. Amemiya, Y., Arakaki, A., Staniland, S.S., Tanaka, T., and Matsunaga, T.: Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28, 5381 (2007).
31. Arakaki, A., Yamagishi, A., Fukuyo, A., Tanaka, M., and Matsunaga, T.: Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria. Mol. Microbiol. 93, 554 (2014).
32. Wang, L., Prozorov, T., Palo, P.E., Liu, X., Vaknin, D., Prozorov, R., Mallapragada, S., and Nilsen-Hamilton, M.: Self-assembly and biphasic iron-binding characteristics of Mms6, a bacterial protein that promotes the formation of superparamagnetic magnetite nanoparticles of uniform size and shape. Biomacromolecules 13, 98 (2012).
33. Wang, W., Bu, W., Wang, L., Palo, P.E., Mallapragada, S., Nilsen-Hamilton, M., and Vaknin, D.: Interfacial properties and iron binding to bacterial proteins that promote the growth of magnetite nanocrystals: X-ray reflectivity and surface spectroscopy studies. Langmuir 28, 4274 (2012).
34. Valverde-Tercedor, C., Abadía-Molina, F., Martinez-Bueno, M., Pineda-Molina, E., Chen, L., Oestreicher, Z., Lower, B.H., Lower, S.K., Bazylinski, D.A., and Jimenez-Lopez, C.: Subcellular localization of the magnetosome protein MamC in the marine magnetotactic bacterium Magnetococcus marinus strain MC-1 using immunoelectron microscopy. Arch. Microbiol. 196, 481 (2014).
35. Richter, M., Kube, M., Bazylinski, D.A., Lombardot, T., Gloeckner, F.O., Reinhardt, R., and Schueler, D.: Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J. Bacteriol. 189, 4899 (2007).
36. Komeili, A., Li, Z., Newman, D.K., and Jensen, G.J.: Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242 (2006).
37. Lohße, A., Borg, S., Raschdorf, O., Kolinko, I., Tompa, É., Pósfai, M., Faivre, D., Baumgartner, J., and Schüler, D.: Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense . J. Bacteriol. 196, 2658 (2014).

Keywords

Related content

Powered by UNSILO

Spatial localization of Mms6 during biomineralization of Fe3O4 nanocrystals in Magnetospirillum magneticum AMB-1

  • Zachery Oestreicher (a1), Eric Mumper (a2), Carol Gassman (a3), Dennis A. Bazylinski (a4), Steven K. Lower (a5) and Brian H. Lower (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.