Skip to main content Accessibility help
×
Home

Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies

  • U. Anselmi-Tamburini (a1), J.E. Garay (a1), Z.A. Munir (a1), A. Tacca (a2), F. Maglia (a2) and G. Spinolo (a2)...

Abstract

The sintering of nanosize powders of fully stabilized zirconia was investigated using the spark plasma sintering (SPS) method. The influence of sintering temperature, heating rate, direct current pulse pattern, sintering time, and sintering pressure on the final density and grain size of the product was investigated. The dependence of densification on temperature showed a maximum at 1200 °C, resulting with nearly fully dense zirconia with a crystallite size of about 100 nm. Heating rate (50∼300 °C min−1) and sintering time (5–16 min) had no significant influence on the final density and the crystallite size. Pulsing patterns ranging from 2:2 to 48:2 (on:off) had no influence on the density or the crystallite size. However, the applied pressure had a significant influence on the final density but no apparent effect on crystallite size for a sintering temperature of 1200 °C and a hold time of 5 min.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: zamunir@ucdavis.edu

References

Hide All
1Moriarty, P.: Nanostructured materials. Rep. Prog. Phys. 64, 297 (2001).
2Schoonman, J.: Nanostructured materials in solid state ionics. Solid State Ionics 135, 5 (2000).
3Gleiter, H.: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).
4Cain, M. and Morrell, R.: Nanostructured ceramics: A review of their potential. Appl. Organomet. Chem. 15, 321 (2001).
5Setter, N.: Electroceramics: Looking ahead. J. Eur. Ceram. Soc. 21, 1279 (2001).
6Vayssieres, L.: On the design of advanced metal oxide nanomaterials. Int. J. Nanotechnol. 1, 1 (2004).
7Hahn, H. and Padmanabhan, K.A.: Mechanical response of nanostructured materials. Nanostruct. Mater. 6, 191 (1995).
8Schwarz, R.B., Srinivasan, S.R., Petrovic, J.J. and Maggiore, C.J.: Synthesis of molybdenum disilicide by mechanical alloying. Mater. Sci. Eng. A 155, 75 (1992).
9de Florio, D.Z. and Muccillo, R.: Sintering of zirconia-yttria ceramics studied by impedance spectroscopy. Solid State Ionics 123, 301 (1999).
10Bravo-Leon, A., Morikawa, Y., Kawahara, M. and Mayo, M. J.: Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Mater. 50, 4555 (2002).
11Srdic, V.V., Winterer, M. and Hahn, H.: Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis. J. Amer. Ceram. Soc. 83, 1853 (2000).
12Ciacchi, F.T., Nightingale, S.A. and Badwal, S.P.S.: Microwave sintering of zirconia-yttria electrolytes and measurement of their ionic conductivity. Solid State Ionics 86–88, 1167 (1996).
13Kanters, J., Eisele, U., Boeder, H. and Roedel, J.: Continuum mechanical description of sintering nanocrystalline zirconia. Adv. Eng. Mater. 3, 158 (2001).
14Chen, D.J. and Mayo, M.J.: Rapid rate sintering of nanocrystalline ZrO2-3 mol% Y2O3. J. Am. Ceram. Soc. 79, 906 (1996).
15Upadhyaya, D.D., Ghosh, A., Dey, G.K., Prasad, R. and Suri, A.K.: Microwave sintering of zirconia ceramics. J. Mater. Sci. 36, 4707 (2001).
16Chaim, R., Basat, G. and Kats-Demyanets, A.: Effect of oxide additives on grain growth during sintering of nanocrystalline zirconia alloys. Mater. Lett. 35, 245 (1998).
17Betz, U., Strum, A., Loeffler, J.F., Wagner, W., Wiedenmann, A. and Hahn, H.: Microstuctural development during final-stage sintering of nanostructured zirconia based cermics. Mater. Sci. Eng. A 281, 68 (2000).
18Farne, G., Ricciardiello, F. Genel, Podda, L. Kucich and Minichwlli, D.: Innovative milling of ceramic powders: Influence on sintering zirconia alloys. J. Eur. Ceram. Soc. 19, 347 (1999).
19Duran, P., Villegaa, M., Fernandez, J.F., Capel, F. and Moure, C.: Theoretically dense and nanostructured ceramics by pressureless sintering of nanosized Y-TZP powders. Mater. Sci. Eng. A 232, 168 (1997).
20Hague, D.C. and Mayo, M.J.: Sinter-forging of nanocrystalline zirconia I. Experimental. J. Am. Ceram. Soc. 80, 149 (1997).
21Betz, U., Scipione, G., Bonetti, E. and Hahn, H.: Low-temperature deformation behavior of nanocrystalline 5 mol% yttria stabilized zirconia under tensile stresses. Nonostruct. Mater. 8, 845 (1997).
22Upadhyaya, D.D., Ghosh, A., Gurumurthy, K.R. and Prasad, R.: Microwave sintering of cubic zirconia. Ceram. Int. 27, 415 (2001).
23Chen, X.J., Khor, K.A., Chan, S.H. and Yu, L.G.: Preparation yttria-stablized zirconia electrolyte by spark plasma sintering. Mater. Sci. Eng. A 341, 43 (2003).
24Takeuchi, T., Kondoh, I., Tamari, N., Balakrishnan, N., Nomura, K., Kageyama, H. and Takeda, Y.: Improvement of mechanical strength of 8 mol% yttria-stabilized zirconia ceramics by spark-plasma sintering. J. Electrochem. Soc. 149, A455 (2002).
25Bak, T., Nowotny, J., Rekas, M. and Sorrell, C.C.: Dynamics of solid-state cell for CO2 monitoring. Solid State Ionics 152, 823 (2002).
26Hibino, T., Tsunekawa, H., Tanimoto, S. and Sano, N.: Improvement of a single-chamber solid-oxide fuel cell and evaluation of new designs. J. Electrochem. Soc. 147, 1338 (2000).
27Mogrocampero, A., Johnson, C.A., Bednarczyk, P.J., Dinwiddie, R.B. and Wang, H.: Effect of gas pressure on thermal conductivity of zirconia thermal-barrier coatings. Sur. Coat. Technol. 94–95, 102 (1997).
28Badwal, S.P.S.: Zirconia-based solid electrolytes: Microstructure, stability and ionic conductivity. Solid State Ionics 52, 23 (1992).
29Gibson, I.R., Dransfield, G.P. and Irvine, J.T.S.: Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on ionic conductivity. J. Mater. Sci. 33, 4297 (1998).
30Munir, Z.A., Charlot, F., Bernard, F., and Gaffet, E.: One-step synthesis and consolidation of nanophase materials. U.S. Patent No. 6 200 515 (2001).
31Orru, R., Woolman, J.N., Cao, G. and Munir, Z.A.: Synthesis of dense nanometric MoSi2 through mechanical and field activation. J. Mater. Res. 16, 1439 (2001).
32Lee, J.W., Munir, Z.A., Shibuya, M. and Ohyanagi, M.: Synthesis of dense TiB2/TiN nanocrystalline composites through mechanical and field activation. J. Am. Ceram. Soc. 84, 1209 (2001).
33Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng. A 287, 183 (2000).
34Bertolino, N., Garay, J., Anselmi-Tamburini, U. and Munir, Z.A.: High-flux current effects in interfacial reactions in Au-Al multilayers. Philos. Mag. B 82, 969 (2002).
35Garay, J.E., Anselmi-Tamburini, U. and Munir, Z.A.: Enhanced growth of intermetallic phases in the system Ni-Ti by current effects. Acta Mater. 51, 4487 (2003).
36Li, W. and Gao, L.: Rapid sintering of nanocrystalline ZrO2(3Y) by spark plasma sintering. J. Eur. Ceram. Soc. 20, 2441 (2000).
37Shen, Z., Johnsson, M., Zhao, Z. and Nygren, M.: Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85, 1921 (2002).
38Lee, Y.I., Lee, J.H., Hong, S.H. and Kim, D.Y.: Preparation of nanostructured TiO2 ceramics by spark plasma sintering. Mater. Res. Bull. 38, 925 (2003).
39Anselmi-Tamburini, U., Garay, J.E., Munir, Z.A., Tacca, A., Maglia, F., Chiodelli, G. and Spinolo, G.: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies. J. Mater. Res. 19, 3263 (2004).
40Kanters, J., Eisele, U., Böder, H. and Rödel, J.: Continuum mechanical description of sintering of nanocrystalline zirconia. Adv. Eng. Mater. 3, 158 (2001).
41Horovistiz, A.L., Frade, J.R. and Hein, L.R.O.: Camparison of fracture surface and plane section analysis for ceramic grain size characterization. J. Eur. Ceram. Soc. 24, 619 (2004).
42Enzo, S., Fagherazzi, G., Benedetti, A. and Polizzi, S.: A profile-fitting procedure for analysis of broadened x-ray diffraction peaks. I. Methodology. J. Appl. Crystallogr. 21, 536 (1988).
43Benedetti, A., Fagherazzi, G., Enzo, S. and Battagliarin, M.: A profile-fitting procedure for analysis of broadened x-ray diffraction peaks. II. Application and discussion of the methodology. J. Appl. Crystallogr. 21, 543 (1988).
44Coble, R.L.: Diffusion models for hot pressing with surface energy and pressure effects as driving force. J. Appl. Phys. 41, 4798 (1970).
45Skandan, G., Hahn, H., Kear, B.H., Roddy, M. and Cannon, W.R.: The effect of applied stress on densification of nanostructured zirconia during sinter forging. Mater. Lett. 20, 305 (1994).
46Garay, E., Glade, S.C., Anselmi-Tamburini, U., Asoka-kumar, P. and Munir, Z.A.: Electric current enhanced point defect mobility in Ni3Ti intermetallic. Appl. Phys. Lett. 85, 573 (2004).

Keywords

Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies

  • U. Anselmi-Tamburini (a1), J.E. Garay (a1), Z.A. Munir (a1), A. Tacca (a2), F. Maglia (a2) and G. Spinolo (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed