Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-22T05:04:30.678Z Has data issue: false hasContentIssue false

Spark erosion: A method for producing rapidly quenched fine powders

Published online by Cambridge University Press:  31 January 2011

A. E. Berkowitz
Affiliation:
General Electric Corporate Research and Development, P. O. Box 8, Schenectady, New York 12301
J. L. Walter
Affiliation:
General Electric Corporate Research and Development, P. O. Box 8, Schenectady, New York 12301
Get access

Abstract

Spark erosion is a method for producing fine powders of metals, alloys, semiconductors, and compounds. The technique involves maintaining repetitive spark discharges among chunks of material immersed in a dielectric liquid. As a result of the spark discharge there is highly localized melting or vaporization of the material. The powders are produced by the freezing of the molten droplets or the condensation and freezing of the vapor in the dielectric liquid. Since the powders are quenched in situ, they may be extremely rapidly cooled. Particles can be produced in sizes ranging from 5 nm to 75 μm. The average powder size and production rate depend on the power parameters, material used, and the dielectric liquid.

Type
Commentaries and Reviews
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yamaguchi, T. and Narita, K.IEEE Trans. Magn. 13, 1621 (1977).CrossRefGoogle Scholar
2Berkowitz, A. E. and Walter, J. L. in Rapid Solidification Processing, II, edited by Mehrabian, R.Kear, B. H. and Cohen, M. (Claitor, Baton Rouge, LA, 1980), p. 294.Google Scholar
3Berkowitz, A. E.Walter, J. L. and Wall, K. F.Phys. Rev. Lett. 46, 1484 (1981).CrossRefGoogle Scholar
4Aur, S.Egami, T.Berkowitz, A. E. and Walter, J. L.Phys. Rev. B 26, 6355 (1982).CrossRefGoogle Scholar
5Berkowitz, A. E. and Walter, J. L.Mater. Sci. Eng. 55, 275 (1982).CrossRefGoogle Scholar
6Walter, J. L.Berkowitz, A. E. and Koch, E. F.Mater. Sci. Eng. 60, 31 (1983).CrossRefGoogle Scholar
7Walter, J. L. and Berkowitz, A. E.Mater. Sci. Eng. 67, 169 (1984).CrossRefGoogle Scholar
8Ishibashi, W. U. S. Patent No. 3,355, 279 issued 28 November 1967.Google Scholar
9Ishibashi, W.Funtai Oyobi Funmatsuyakin (J. Jpn. Soc. Powder Powder Metall.) 24, 107 (1977) (in Japanese).Google Scholar
10Ishibashi, W. in Ref. 9, p. 113.Google Scholar
11Berkowitz, A. E. and Walter, J. L.J. Magn. Magn. Mater. 39, 75 (1983).CrossRefGoogle Scholar
12Berkowitz, A. E.Livingston, J. D. and Walter, J. L.J. Appl. Phys. 55, 2106 (1984).CrossRefGoogle Scholar
13Svedberg, T.Colloid Chemistry (Chemical Catalog, New York, 1924), Part I.Google Scholar
14Rudorff, D. W.Proc. Inst. Mech. Eng. 171, 495 (1957).CrossRefGoogle Scholar
15Lazerenko, B. R. and Lazarenko, N. I.Stanki Instrum. 17, 8 (1946).Google Scholar
16Crichton, I. M.McGeough, J. A.Munro, W. and White, C.Precis. Eng. 3, 155 (1981).CrossRefGoogle Scholar
17Tsuchiya, H.Inoue, T. and Mori, Y. in the Proceedings of the 7th International Conference on Electromachining, edited by Croo-kall, J. R. (North-Holland, Amsterdam 1983), p. 107.Google Scholar
18Sharbaugh, A. H.Devins, J. C. and Razad, S. J.IEEE Trans. Electron. Insul. 13, 249 (1978).Google Scholar
19Fuhr, J. and Schmidt, W. F.J. Appl. Phys. 59, 3702 (1986).Google Scholar
20Guerrero-Alvarez, J. L., Greene, J. E. and Turkovich, B. F. von, J. Trans. ASME B 95, 965 (1973).Google Scholar
21Greene, J. E. and Guerrero-Alverez, J. L., Metall. Trans. 5, 695 (1974).CrossRefGoogle Scholar
22Walter, J. L. and Berkowitz, A. E. in the Proceedings of the Fifth Materials Research Society Symposium, December 1986, Boston, MA, Paper No. V3.10.Google Scholar
23Stone, R. H. Van, Rizzo, F. J. and Radavich, J. F. in the Proceedings of the 2nd Conference on Rapid Solidification, Reston, VA, 1980, edited by Mehrabian, R.Kear, B. H. and Cohen, M. (Claitor's, Baton Rouge, LA, 1980), p. 260.Google Scholar
24Joly, P. A. and Mehrabian, R.J. Mater. Sci. 9, 1446 (1974).CrossRefGoogle Scholar
25Grant, N. J. in the Proceedings of the Conference on Rapid Solidification Processing, Baton Rouge, LA, 1978, edited by Mehrabian, R.Kear, B. H. and Cohen, M. (Claitor, Baton Rouge, LA, 1980), p. 9.Google Scholar
26Berkowitz, A. E.Grande, J. C.Miller, S. A.Murphy, R. J. and Walter, J. L.Mater. Sci. Eng. 62, 217 (1984).CrossRefGoogle Scholar
27Walter, J. L. in the Proceedings of the 3rd International Conference on Rapidly Quenched Metals, Brighton, England, 1978, edited by Cantor, B. (Metals Society, London, 1978), Vol. 1, p. 30.Google Scholar
28Berkowitz, A. E.Livingston, J. D.Nathan, B. D. and Walter, J. L.J. Appl. Phys. 50, 1754 (1979).CrossRefGoogle Scholar
29Walter, J. L. and Berkowitz, A. E. in Ref. 22, Paper No. G1.8.Google Scholar
30Ayers, J. D. and Moore, K.Metall. Trans. A 15, 1117 (1984).CrossRefGoogle Scholar
31Lisichkin, G. V.Pisarenko, O. I.Khinchagashvili, V. Yu, and Lunina, M. A.Russ. J. Inorg. Chem. 22 (4), 619 (1977).Google Scholar
32Lunina, M. A. and Novozkilov, Yu. A.Colloid J. USSR 31, 370 (1969).Google Scholar