Skip to main content Accessibility help
×
Home

Some titanium germanium and silicon compounds: Reaction and properties

  • O. Thomas (a1), F. M. d'Heurle (a1) and S. Delage (a1)

Abstract

Titanium reacts with pure Ge in two different ways: At low temperatures one observes the formation of Ti6Ge5 with some characteristics typical of diffusion-controlled reaction. Upon completion of this first stage Ti6Ge5 reacts with remaining Ge to form TiGe2, isomorphous with C54 TiSi2, in a process which is clearly controlled by nucleation. The same observations apply to reactions with a Ge alloy containing 25 at.% Si. With an alloy containing 50 at.% Si the two stages become merged, so that while remaining identifiable, they are much less distinct than with the previous conditions. The reaction behavior observed with a Ge alloy containing 80 at.% Si resembles that generally obtained with pure Si: there are no easily identifiable steps between the initial Si–Ti sample and the final one, Si–TiSi2. With both the 50-50 and 80-20 Si–Ge alloys the formation of the C54 structure is preceded by that of the C49 structure (ZrSi2 type), as with pure Si. The gradual merging of the diffusion-controlled reaction and that controlled by nucleation as the concentration of Si in the substrate increases implies that nucleation plays a significant role in the formation of TiSi2, even if that role cannot be easily isolated. Effects due to gas impurities on the path of the metal-substrate reaction have been analyzed. The resistivities of several pure and alloyed phases have been measured. Alloy scattering in the system TiSi2–TiGe2 is briefly discussed.

Copyright

References

Hide All
1Thomas, O., Delage, S., d'Heurle, F. M., and Scilla, G., Appl. Phys. Lett. 54, 228 (1989).
2Thomas, O., Delage, S., d'Heurle, F. M., and Scilla, G., Appl. Surf. Sci. (1989).
3Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallo-graphic Data for Intermetalllc Phases (American Society for Metals, Metals Park, OH, 1986), pp. 2435, 3194.
4Darken, L. S. and Gurry, R. W., Physical Chemistry of Metals (McGraw-Hill, New York, 1953), p. 79.
5Binary Alloy Phase Diagrams, edited by Massalski, T., Bennett, L. H., and Baker, H. (American Society for Metals, Metals Park, OH, 1986), Vol. 1, p. 1252.
6Nicolet, M-A. and Lau, S. S., in VLSI Science and Technology: Mi-crostructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic Press, New York, 1983), p. 453.
7 Standard Powder Diffraction Pattern no. 21–357 (1971).
8d'Heurle, F. M., J. Mater. Res. 3 (1), 167 (1988).
9Pico, C. A. and Lagally, M., J. Appl. Phys. 64, 4957 (1988).
10Baglin, J. E., Dempsey, J., Hammer, W., d'Heurle, F. M., Petersson, C. S., and Serrano, C., J. Electron. Mater. 8, 641 (1979).
11Torres, J., Pelissier, A., Perio, A., Oberlin, J. C., and Bomchil, G., Le Vide-Les Couches Minces 42–236, 91 (1987).
12Appelbaum, A., Eizenberg, M., and Brener, R., Vacuum 33, 227 (1983).
13Gas, P., Tardy, J., and d'Heurle, F. M., J. Appl. Phys. 60, 2211 (1987).
14Gas, P., Tardy, J., LeGoues, F. K., and d'Heurle, F. M., J. Appl. Phys. 61, 2203 (1987).
15Angilello, J., Baglin, J. E., d'Heurle, F. M., Petersson, C. S., and Sigmüller, A., in Thin Film Interfaces and Interactions, edited by Baglin, J. E. and Poate, J. (The Electrochemical Society, Pennington, NJ, 1980), p. 213.
16d'Heurle, F. M., Gas, P., Engström, I., Nygren, S., Östling, M., and Petersson, C. S., IBM Research Report RC 1151, Yorktown Heights, NY, 1985.
17Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).
18Raaijmakers, I. J. M., Reader, A. H., and Houtum, H. J. W. Van, J. Appl. Phys. 57, 5240 (1985).
19Jia, C. L., Jiang, J., and Zong, X. F., Philos. Mag. A59, 999 (1989).
20 Standard Diffraction Powder Pattern no. 5–0582.
21 Standard Diffraction Powder Pattern no. 23–964 (1973).
22Zheng, L. R., Hung, L. S., Feng, S. Q., Revesz, P., Mayer, J. W., and Miles, G., Appl. Phys. Lett. 48, 767 (1986).
23Brat, T., Osburn, C., Finstad, T., Liu, J., and Ellington, B., J. Electrochem. Soc. 133, 1451 (1986).
24Nordheim, L.; Ann. Phys. 9, 607 (1931).
25Linde, J. O., Ann. Phys. 15, 219 (1932).
26Blatt, F. J., Phys. Rev. 108, 285 (1957).
27Binary Alloy Phase Diagrams, edited by Massalski, T., Bennett, L. H., and Baker, H. (American Society for Metals, Metals Park, OH, 1986).
28Gas, P., Scilla, G., Michel, A., LeGoues, F. K., Thomas, O., and d'Heurle, F. M., J. Appl. Phys. 63, 5335 (1988).
29d'Heurle, F.M. and Petersson, C. S., Thin Solid Films 128, 283 (1985).
30Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987).
31Holloway, K. and Sinclair, R., J. Less-Common Met. 140, 139 (1988).
32Tu, K. N., Smith, D. A., and Weiss, B. Z., Phys. Rev. B 36, 8948 (1987).
33Smith, D. A., Tu, K. N., and Weiss, B. Z., Ultramicroscopy 23, 405 (1987).
34Weiss, B. Z., Tu, K. N., and Smith, D. A., Acta Metall. 34, 1491 (1986).
35d'Heurle, F. M., IBM Research Report No. RC 10422, Yorktown Heights, NY 10598, 1983.
36J, I.. Raaijmakers, M. M., Fundamental Aspects of Reactions in Tita-nium-Silicon Thin Films For Integrated Circuits, Ph.D. Thesis, Technical University of Eindhoven, Eindhoven, The Netherlands, 1988.
37Berti, M., Drigo, A. V., Cohen, C., Siejka, J., Bentini, G. G., Nipoti, R., and Guerri, S., J. Appl. Phys. 55, 3558 (1984).
38d'Heurle, F. M. and Gangulee, A., in The Nature and Behavior of Grain Boundaries, edited by Hu, H. (Plenum Press, New York, 1972), p. 339.
39LeGoues, F. K., Wittmer, M., Kwok, T., Huang, H-C., and Ho, P. S., Electrochem, J.. Soc. 134, 944 (1987).
40Borisov, V. T., Golikov, V. M., and Scherbedinsky, G. V., Fiz. Met. Metalloved 17, 881 (1964).
41Rosso, T., Aucouturier, M., and Lacombe, P., Scripta Metall. 2, 393 (1968).
42Gas, P., Poize, S., and Bernardini, J., Acta Metall. 34, 395 (1986).
43Gas, P., Poize, S., Bernardini, J., and Cabané, J., Acta Metall. 37, 17 (1989).
44Kattelus, H. and Nicolet, M-A., in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by Gupta, D. and Ho, P. S. (Noyes Publications, Park Ridge, NJ, 1988), p. 432.
45Thomas, O., Charai, A., d'Heurle, F.M., Finstad, T. G., and Joshi, R. V., Thin Solid Films 171, 343 (1989).
46Harper, J. M. E., Hörnstrom, S. E., Thomas, O., and Krusin-Elbaum, L., J. Vac. Sci. Technol. A7, 875 (1989).
47Chu, W. K., Kräuttle, H., Mayer, J. W., Müller, H., and Tu, K. N., Appl. Phys. Lett. 25, 454 (1974).
48Botha, A. P. and Pretorius, R. (Proc. Mater. Res. Soc. Symp.) (Ma-terials Research Society, Pittsburgh, PA, 1982), Vol. 10, p. 129.
49Cahoon, E. C., Comrie, C. M., and Pretorius, R. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1984), Vol. 25, p. 57.
50d'Heurle, F. M., LeGoues, F. K., Joshi, R., and Suni, I., Appl. Phys. Lett. 48, 332 (1986).
51d'Heurle, F. M., Tersoff, J., Finstad, T. J., and Cros, A., Appl. Phys. Lett. 59, 177 (1986).
52White, A. (private communication, 1988).

Some titanium germanium and silicon compounds: Reaction and properties

  • O. Thomas (a1), F. M. d'Heurle (a1) and S. Delage (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed