Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T10:46:07.541Z Has data issue: false hasContentIssue false

Solvothermal synthesis of zirconia and yttria-stabilized zirconia nanocrystalline particles

Published online by Cambridge University Press:  03 March 2011

Xin M. Wang
Affiliation:
Materials Science Centre, University of Manchester, Manchester M1 7HS, United Kingdom
Ping Xiao*
Affiliation:
Materials Science Centre, University of Manchester, Manchester M1 7HS, United Kingdom
*
a) Address all correspondence to this author. e-mail: ping.xiao@manchester.ac.uk
Get access

Abstract

A solvothermal method was used to prepare zirconia and yttria-stabilized zirconia (YSZ) particles using zirconium hydroxide and yttrium hydroxide particles as precursors and ethanol or isopropanol as reaction media. The particle properties were characterized with x-ray diffractometry, scanning electron microscopy, transmission electron microscopy, thermal analysis, laser particle-size analysis, nitrogen adsorption (Brunauer–Emmett–Teller method) and Zeta potential analysis. Cubic/tetragonal ZrO2 and YSZ nanocrystals with crystallite size around 5 nm were obtained. The effect of different hydroxide precursors, attrition milling of hydroxide precursors, solvothermal processing conditions, and mineralizer was investigated and discussed by referring to the crystallization process of zirconium hydroxides.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lange, F.F.: Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3 (1989).CrossRefGoogle Scholar
2Reed, J.S.: Principles of Ceramic Processing, 2nd ed. (John Wiley & Sons, 1995).Google Scholar
3Science and Technology of Zirconia III edited by Somiya, S., Yamamoto, N., and Yanagida, N.Y. (American Ceramic Society, Columbus, OH, 1988).Google Scholar
4Groza, J.R.: Nanosintering. Nanostruct. Mater. 12, 987 (1999).CrossRefGoogle Scholar
5Mayo, M.J.: Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41, 85 (1996).CrossRefGoogle Scholar
6Mayo, M.J., Suresh, A., and Porter, W.D.: Thermodynamics for nanosystems: Grain and particle-size dependent phase diagrams. Rev. Adv. Mater. Sci. 5, 100 (2003).Google Scholar
7Lewis, J.A.: Colloidal processing of ceramics. J. Am. Ceram. Soc. 83, 2341 (2000).CrossRefGoogle Scholar
8Tsukada, T., Venigalla, S., Morrone, A.A., and Adair, J.H.: Low-temperature hydrothermal synthesis of yttrium-doped zirconia powders. J. Am. Ceram. Soc. 82, 1169 (1999).CrossRefGoogle Scholar
9Somiya, S. and Akiba, T.: Hydrothermal zirconia powders: A bibliography. J. Eur. Ceram. Soc. 9, 81 (1999).CrossRefGoogle Scholar
10Piticescu, R.R., Monty, C., Taloi, D., Motoc, A., and Axinte, S.: Hydrothermal synthesis of zirconia nanomaterials. J. Eur. Ceram. Soc. 21, 2057 (2001).CrossRefGoogle Scholar
11Tani, E., Yoshimura, M., and Somiya, S.: Formation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions. J. Am. Ceram. Soc. 66, 11 (1983).CrossRefGoogle Scholar
12Nishizawa, H., Yamasaki, N., and Matsuoka, K.: Crystallization and transformation of zirconia under hydrothermal conditions. J. Am. Ceram. Soc. 65, 343 (1982).CrossRefGoogle Scholar
13Dell’Agli, G. and Mascolo, G.: Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature. J. Eur. Ceram. Soc. 20, 139 (2000).CrossRefGoogle Scholar
14Wang, X.M., Lorimer, G., and Xiao, P.: Solvothremal synthesis and processing of yttria-stabilized zirconia nanopowder. J. Am. Ceram. Soc. 88, 809 (2005).CrossRefGoogle Scholar
15Zile, H., Wang, X.M., Xiao, P., and Shi, J.: Solvent effect on microstructure of yttria-stabilized zirconia (YSZ) particles in solvothermal synthesis. J. Eur. Ceram. Soc. 26, 2257 (2006).Google Scholar
16Khollam, Y.B., Deshpande, A.S., Patil, A.J., Potdar, H.S., Deshpande, S.B., and Date, S.K.: Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route. Mater. Chem. Phys. 71, 235 (2001).CrossRefGoogle Scholar
17Dell’Agli, G., Colantuono, A., and Mascolo, G.: The effect of mineralizers on the crystallization of zirconia gel under hydrothermal conditions. Solid State Ionics 123, 87 (1999).CrossRefGoogle Scholar
18Dell’Agli, G. and Mascolo, G.: Zirconia-yttria (8 mol%) powder hydrothermally synthesized from different y-based precursors. J. Eur. Ceram. Soc. 24, 915 (2004).CrossRefGoogle Scholar
19Zhao, J., Fan, W., Wu, D., and Sun, Y.: Stable nanocrystalline zirconia sols prepared by a novel method: Alcohol thermal synthesis. J. Mater. Res. 15, 402 (2000).CrossRefGoogle Scholar
20Inoue, M., Kominami, H., and Inui, T.: Solvothermal synthesis of large surface area zirconia. Res. Chem. Intermed. 24, 571 (1998).CrossRefGoogle Scholar
21Noh, H-J., Seo, D-S., Kim, H., and Lee, J-K.: Synthesis and crystallization of anisotropic shaped ZrO2 nanocrystalline powders by hydrothermal process. Mater. Lett. 57, 2425 (2003).CrossRefGoogle Scholar
22Zhang, Y.W., Xu, G., Yan, Z.G., Yang, Y., Liao, C.S., and Yan, C.H.: Nanocrystalline rare earth stabilized zirconia: Solvothermal synthesis via heterogeneous nucleation-growth mechanism, and electrical properties. J. Mater. Chem. 12, 970 (2002).CrossRefGoogle Scholar
23Dell’Agli, G. and Mascolo, G.: Agglomeration of 3 mol% Y-TZP powders synthesized by hydrothermal treatment. J. Eur. Ceram. Soc. 21, 29 (2001).CrossRefGoogle Scholar
24Kolen’ko, Y.V., Maximov, V.D., Burukhin, A.A., Muhanov, V.A., and Churagulov, B.R.: Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Mater. Sci. Eng., C 23, 1033 (2003).CrossRefGoogle Scholar
25Sagel-Ransijn, C.D., Winubst, A.J.A., Burggraaf, A.J., and Verweij, H.: The influence of crystallization and washing medium on the characteristics of nanocrystalline Y-TZP. J. Eur. Ceram. Soc. 16, 159 (1996).CrossRefGoogle Scholar
26Norton, D.L.: Theory of hydrothermal systems. Ann. Rev. Earth Planet. Sci. 12, 155 (1984).CrossRefGoogle Scholar
27Huang, C., Tang, Z., and Zhang, Z.: Differences between zirconium hydroxide [Zr(OH)4· n H2O] and hydrous zirconia (ZrO2·n H2O). J. Am. Ceram. Soc. 84, 1637 (2001).CrossRefGoogle Scholar
28Matsui, K. and Ohgai, M.: Formation mechanism of hydrous zirconia particles produced by hydrolysis of ZrOCl2 solutions: IV. Effects of ZrOCl2 concentration and reaction temperature. J. Am. Ceram. Soc. 85, 545 (2002).CrossRefGoogle Scholar
29Muha, G.M. and Vaughan, P.A.: Structure of the complex ion in aqueous solutions of zirconyl and hafnyl oxyhalides. J. Chem. Phys. 33, 194 (1960).CrossRefGoogle Scholar
30Clearfield, A.: Structural aspects of zirconium chemistry. Rev. Pure Appl. Chem. 14, 91 (1964).Google Scholar
31Kaya, C., He, J.Y., Gu, X., and Butler, E.G.: Nanostructured ceramic powders by hydrothermal synthesis and their application. Microporous Mesoporous Mater. 54, 37 (2002).CrossRefGoogle Scholar
32Lange’s Handbook of Chemistry, 15th ed., edited by Dean, J.A. (McGraw-Hill, Columbus, OH, 1999).Google Scholar
33Komarneni, S., Roy, R., and Li, Q.H.: Microwave-hydrothermal synthesis of ceramic powders. Mater. Res. Bull. 27, 1393 (1992).CrossRefGoogle Scholar
34Zhang, Y., Xu, G., Yan, Z., Yang, Y., Liao, C., and Yan, C.: Nanocrystalline rare earth stabilized zirconia: Solvothermal synthesis via heterogeneous nucleation-growth mechanism, and electrical properties. J. Mater. Chem. 12, 970 (2002).CrossRefGoogle Scholar