Skip to main content Accessibility help

Solvothermal synthesis of shape-controlled manganese oxide materials and their electrochemical capacitive performances

  • Wen-Yin Ko (a1), Lung-Jing Chen (a1), Yu-Hung Chen (a1) and Kuan-Jiuh Lin (a1)


We present a simple and quick procedure for the one-pot synthesis of manganese oxides under a basic solvothermal condition in the presence of cationic surfactants acting as the template in a 2-butanol/water solution. Three-dimensional spinel-type MnO2 microspheres composed of small nanoparticles have been fabricated for the first time using our method. Their corresponding electrochemical performances in the applications of supercapacitor electrodes exhibit a good specific capacitance (SC) value of ∼190 F/g at 0.5 A/g and excellent SC retention and Coulombic efficiency of ∼100% and ∼95% after 1000 charge/discharge cycles at 1 A/g, respectively. This suggests its potential applications in energy storage devices. Further, we demonstrate that this solvothermal technique enables the morphological tuning of manganese oxides in various forms such as schists, rods, fibers, and nanoparticles. This work describes a rapid and low-cost technique to fabricate novel architectures of manganese oxides having the desired crystal phase, which will highly benefit various supercapacitor applications.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All
1. Kim, F., Connor, S., Song, H., Kuykendall, T., and Yang, P.D.: Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673 (2004).
2. Chen, Z.W., Jiao, Z., Pan, D.Y., Li, Z., Wu, M.H., Shek, C.H., Wu, C.M.L., and Lai, J.K.L.: Recent advances in manganese oxide nanocrystals: Fabrication, characterization, and microstructure. Chem. Rev. 112, 3833 (2012).
3. Millstone, J.E., Wei, W., Jones, M.R., Yoo, H.J., and Mirkin, C.A.: Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 8, 2526 (2008).
4. Ko, W.Y., Chen, W.H., Tzeng, S.D., Gwo, S., and Lin, K.J.: Synthesis of pyramidal copper nanoparticles on gold substrate. Chem. Mater. 18, 6097 (2006).
5. Ko, W.Y., Chen, W.H., Cheng, C.Y., and Lin, K.J.: Architectural growth of Cu nanoparticles through electrodeposition. Nanoscale Res. Lett. 4, 1481 (2009).
6. Chen, J.Z., Yen, Y.C., Ko, W.Y., Cheng, C.Y., and Lin, K.J.: The role of the fabrication of anatase-TiO2 chain-networked photoanodes. Adv. Mater. 23, 3970 (2011).
7. Chen, J.Z., Ko, W.Y., Yen, Y.C., Chen, P.H., and Lin, K.J.: Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. ACS Nano 6, 6633 (2012).
8. Sun, Y.G. and Xia, Y.N.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002).
9. Lee, H., Habas, S.E., Kweskin, S., Butcher, D., Somorjai, G.A., and Yang, P.D.: Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 45, 7824 (2006).
10. Qiu, G.H., Huang, H., Dharmarathna, S., Benbow, E., Stafford, L., and Suib, S.L.: Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties. Chem. Mater. 23, 3892 (2011).
11. Brock, S.L., Sanabria, M., Nair, J., Suib, S.L., and Ressler, T.: Tetraalkylammonium manganese oxide gels: Preparation, structure, and ion-exchange properties. J. Phys. Chem. B 105, 5404 (2001).
12. Pinna, N., Willinger, M., Weiss, K., Urban, J., and Schlogl, R.: Local structure of nanoscopic materials: V2O5 nanorods and nanowires. Nano Lett. 3, 1131 (2003).
13. Soler-illia, G.J.D., Sanchez, C., Lebeau, B., and Patarin, J.: Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093 (2002).
14. Nguyen, T.D. and Do, T.O.: Solvo-hydrothermal approach for the shape-selective synthesis of vanadium oxide nanocrystals and their characterization. Langmuir 25, 5322 (2009).
15. Huang, X.K., Lv, D.P., Yue, H.J., Attia, A., and Yang, Y.: Controllable synthesis of alpha- and beta-MnO(2): Cationic effect on hydrothermal crystallization. Nanotechnology 19, 225606 (2008).
16. Zhang, L.C., Liu, Z.H., Lv, H., Tang, X.H., and Ooi, K.: Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. C 111, 8418 (2007).
17. Kim, J.H., Ayalasomayajula, T., Gona, V., and Choi, D.: Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries. J. Power Sources 183, 366 (2008).
18. Lee, J.W., Hall, A.S., Kim, J-D., and Mallouk, T.E.: A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158 (2012).
19. Wei, W.F., Cui, X.W., Chen, W.X., and Ivey, D.G.: Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697 (2011).
20. Ghodbane, O., Pascal, J.L., Fraisse, B., and Favier, F.: Structural in situ study of the thermal behavior of manganese dioxide materials: Toward selected electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2, 3493 (2010).
21. Zhu, J., Shi, W., Xiao, N., Rui, X., Tan, H., Lu, X., Hng, H.H., Ma, J., and Yan, Q.: Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 4, 2769 (2012).
22. Ghodbane, O., Pascal, J-L., and Favier, F.: Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1, 1130 (2009).
23. Wang, Y., Zhu, Q.S., and Tao, L.: Fabrication and growth mechanism of hierarchical porous Fe3O4 hollow sub-microspheres and their magnetic properties. CrystEngComm 13, 4652 (2011).
24. Xia, H., Feng, J.K., Wang, H.L., Lai, M.O., and Lu, L.: MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J. Power Sources 195, 4410 (2010).
25. Portehault, D., Cassaignon, S., Baudrin, E., and Jolivet, J.P.: Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4 -/Mn2 + reaction. J. Mater. Chem. 19, 2407 (2009).
26. Kai, K., Kobayashi, Y., Yamada, Y., Miyazaki, K., Abe, T., Uchimoto, Y., and Kageyama, H.: Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode. J. Mater. Chem. 22, 14691 (2012).
27. Brock, S.L., Sanabria, M., Suib, S.L., Urban, V., Thiyagarajan, P., and Potter, D.I.: Particle size control and self-assembly processes in novel colloids of nanocrystalline manganese oxide. J. Phys. Chem. B 103, 7416 (1999).
28. Camblor, M.A., Corma, A., and Valencia, S.: Characterization of nanocrystalline zeolite beta. Microporous Mesoporous Mater. 25, 59 (1998).
29. Bach, S., Henry, M., Baffier, N., and Livage, J.: Sol-gel synthesis of manganese oxides. J. Solid State Chem. 88, 325 (1990).
30. Brousse, T., Toupin, M., Dugas, R., Athouel, L., Crosnier, O., and Belanger, D.: Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, A2171 (2006).
31. Devaraj, S. and Munichandraiah, N.: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406 (2008).
32. Xue, Y., Chen, Y., Zhang, M-L., and Yan, Y-D.: A new asymmetric supercapacitor based on lambda-MnO2 and activated carbon electrodes. Mater. Lett. 62, 3884 (2008).


Type Description Title
Supplementary materials

Lin Supplementary Material

 Word (38 KB)
38 KB

Solvothermal synthesis of shape-controlled manganese oxide materials and their electrochemical capacitive performances

  • Wen-Yin Ko (a1), Lung-Jing Chen (a1), Yu-Hung Chen (a1) and Kuan-Jiuh Lin (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed