Skip to main content Accessibility help
×
Home

Solvent-vapor annealing-induced growth, alignment, and patterning of π-conjugated supramolecular nanowires

  • Hin-Lap Yip (a1), Hong Ma (a1), Yanqing Tian (a1), Orb Acton (a1), Neil M. Tucker (a2) and Alex K-Y. Jen (a2)...

Abstract

The self-assembling properties of two rationally designed discotic π-conjugated hexaazatrinaphthylene (HATNA) molecules have been studied. In appropriate solvent systems, both ester-dodecyl-substituted and amide-dodecyl-substituted HATNAs self-assembled into nanowires and formed organogels. These nanowires could be easily transferred onto solid supports through spin casting for morphological study. In addition to the solution-based self-assembly method, solvent-vapor annealing (SVA) was explored as an alternative way to control the organization of supramolecular nanowires on surfaces. It was found that amorphous thin film of HATNA molecules transformed gradually into nanowire structures through a nucleation and growth mechanism during the SVA process. Several parameters including the preordering of molecules in the original thin film, choice of solvent vapors, annealing times, and surface properties were tuned to create different supramolecular organizations. Under particular conditions, aligned nanowires with preferential direction can be achieved.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: ajen@u.washington.edu

References

Hide All
1.Whitesides, G.M., Mathias, J.P., and Seto, C.T.: Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 254, 1312 (1991).
2.Lehn, J.M.: Toward self-organization and complex matter. Science 295, 2400 (2002).
3.Meijer, E.W. and Schenning, A.P.H.J.: Chemistry: Material marriage in electronics. Nature 419, 353 (2002).
4.Grimsdale, A.C. and Mullen, K.: The chemistry of organic nanomaterials. Angew. Chem. Int. Ed. 44, 5592 (2005).
5.Schenning, A.P.H.J. and Meijer, E.W.: Supramolecular electronics: Nanowires from self-assembled pi-conjugated systems. Chem. Commun. 26, 3245 (2005).
6.Hoeben, F.J.M., Jonkheijm, P., Meijer, E.W., and Schenning, A.P.H.J.: About supramolecular assemblies of pi-conjugated systems. Chem. Rev. 105, 1491 (2005).
7.Elemans, J.A.A.W., van Hameren, R., Nolte, R.J.M., and Rowan, A.E.: Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv. Mater. 18, 1251 (2006).
8.van Hameren, R., Schon, P., van Buul, A.M., Hoogboom, J., Lazarenko, S.V., Gerritsen, J.W., Engelkamp, H., Christianen, P.C.M., Heus, H.A., Maan, J.C., Rasing, T., Speller, S., Rowan, A.E., Elemans, J.A.A.W., and Nolte, R.J.M.: Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science 314, 1433 (2006).
9.Schmidt-Mende, L., Fechtenkotter, A., Mullen, K., Moons, E., Friend, R.H., and MacKenzie, J.D.: Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119 (2001).
10.El-ghayoury, A., Schenning, A.P.H.J., van Hal, P.A., van Duren, J.K.J., Janssen, R.A.J., and Meijer, E.W.: Supramolecular hydrogen-bonded oligo(p-phenylene vinylene) polymers. Angew. Chem. Int. Ed. 40, 3660 (2001).
11.Neuteboom, E.E., Meskers, S.C.J., van Hal, P.A., van Duren, J.K.J., Meijer, E.W., Janssen, R.A.J., Dupin, H., Pourtois, G., Cornil, J., Lazzaroni, R., Bredas, J.L., and Beljonne, D.: Alternating oligo(p-phenylene vinylene)-perylene bisimide copolymers: Synthesis, photophysics, and photovoltaic properties of a new class of donor-acceptor materials. J. Am. Chem. Soc. 125, 8625 (2003).
12.Pisula, W., Menon, A., Stepputat, M., Lieberwirth, I., Kolb, U., Tracz, A., Sirringhaus, H., Pakula, T., and Mullen, K.: A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa- peri-hexabenzoeoronene. Adv. Mater. 17, 684 (2005).
13.Shklyarevskiy, I.O., Jonkheijm, P., Stutzmann, N., Wasserberg, D., Wondergem, H.J., Christianen, P.C.M., Schenning, A.P.H.J., de Leeuw, D.M., Tomovic, Z., Wu, J., Mullen, K., and Maan, J.C.: High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid-crystalline semiconductors. J. Am. Chem. Soc. 127, 16233 (2005).
14.Cavallini, M., Stoliar, P., Moulin, J.F., Surin, M., Leclere, P., Lazzaroni, R., Breiby, D.W., Andreasen, J.W., Nielsen, M.M., Sonar, P., Grimsdale, A.C., Mullen, K., and Biscarini, F.: Field-effect transistors based on self-organized molecular nanostripes. Nano Lett. 5, 2422 (2005).
15.Xiao, S.X., Myers, M., Miao, Q., Sanaur, S., Pang, K., Steigerwald, M.L., and Nuckolls, C.: Molecular wires from contorted aromatic compounds. Angew. Chem. Int. Ed. 44, 7390 (2005).
16.Yip, H.L., Ma, H., Jen, A.K.Y., Dong, J., and Parviz, B.A.: Two-dimensional self-assembly of 1-pyrylphosphonic acid: Transfer of stacks on structured surface. J. Am. Chem. Soc. 128, 5672 (2006).
17.Dong, J., Yip, H.L., Ma, H., Jen, A.K.Y., and Parviz, B.A.: Gated lateral charge transport in self-assembled 1-pyrylphosphonic acid molecular multilayers. Appl. Phys. Lett. 88, 223112 (2006).
18.Jonkheijm, P., Stutzmann, N., Chen, Z., de Leeuw, D.M., Meijer, E.W., Schenning, A.P.H.J., and Wurthner, F.: Control of ambipolar thin film architectures by co-self-assembling oligo(p-phenylenevinylene)s and perylene bisimides. J. Am. Chem. Soc. 128, 9535 (2006).
19.Wurthner, F., Thalacker, C., and Sautter, A.: Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and pi–pi interactions. Adv. Mater. 11, 754 (1999).
20.Jonkheijm, P., Hoeben, F.J.M., Kleppinger, R., van Herrikhuyzen, J., Schenning, A.P.H.J., and Meijer, E.W.: Transfer of pi-conjugated columnar stacks from solution to surfaces. J. Am. Chem. Soc. 125, 15941 (2003).
21.Nguyen, T.Q., Martel, R., Avouris, P., Bushey, M.L., Brus, L., and Nuckolls, C.: Molecular interactions in one-dimensional organic nanostructures. J. Am. Chem. Soc. 126, 5234 (2004).
22.Hill, J.P., Jin, W., Kosaka, A., Fukushima, T., Ichihara, H., Shimomura, T., Ito, K., Hashizume, T., Ishii, N., and Aida, T.: Self-assembled hexa- peri-hexabenzocoronene graphitic nanotube. Science 304, 1481 (2004).
23.Shirakawa, M., Fujita, N., and Shinkai, S.: A stable single piece of unimolecularly pi-stacked porphyrin aggregate in a thixotropic low molecular weight gel: A one-dimensional molecular template for polydiacetylene wiring up to several tens of micrometers in length. J. Am. Chem. Soc. 127, 4164 (2005).
24.Kastler, M., Pisula, W., Wasserfallen, D., Pakula, T., and Mullen, K.: Influence of alkyl substituents on the solution- and surface-organization of hexa- peri-hexabenzocoronenes. J. Am. Chem. Soc. 127, 4286 (2005).
25.Genson, K.L., Holzmueller, J., Ornatska, M., Yoo, Y.S., Par, M.H., Lee, M., and Tsukruk, V.V.: Assembling of dense fluorescent supramolecular webs via self-propelled star-shaped aggregates. Nano Lett. 6, 435 (2006).
26.Jonkheijm, P., van der Schoot, P., Schenning, A.P.H.J., and Meijer, E.W.: Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80 (2006).
27.Raez, J., Moralez, J.G., and Fenniri, H.: Long-range flow-induced alignment of self-assembled rosette nanotubes on Si/SiOx and poly(methyl methacrylate)-coated Si/SiOx. J. Am. Chem. Soc. 126, 16298 (2004).
28.Shklyarevskiy, I.O., Jonkheijm, P., Christianen, P.C.M., Schenning, A.P.H.J., Guerzo, A.D., Desvergne, J.P., Meijer, E.W., and Maan, J.C.: Magnetic alignment of self-assembled anthracene organogel fibers. Langmuir 21, 2108 (2005).
29.Lee, J.H., Choi, S.M., Pate, B.D., Chisholm, M.H., and Han, Y.S.: Magnetic uniaxial alignment of the columnar superstructure of discotic metallomesogens over the centimetre length scale. J. Mater. Chem. 16, 2785 (2006).
30.Messmore, B.W., Hulvat, J.F., Sone, E.D., and Stupp, S.I.: Synthesis, self-assembly, and characterization of supramolecular polymers from electroactive dendron rodcoil molecules. J. Am. Chem. Soc. 126, 14452 (2004).
31.Sardone, L., Palermo, V., Devaux, E., Credgington, D., de Loos, M., Marletta, G., Cacialli, F., van Esch, J., and Samori, P.: Electric-field-assisted alignment of supramolecular fibers. Adv. Mater. 18, 1276 (2006).
32.Yip, H.L., Zou, J., Ma, H., Tian, Y., Tucker, N.M., and Jen, A.K.Y.: Patterning of robust self-assembled n-type hexaazatrinaphthylene-based nanorods and nanowires by microcontact printing. J. Am. Chem. Soc. 128, 13042 (2006).
33.Du, M., Bu, X.H., and Biradha, K.: A large delocalized pi-electron system: Diquinoxalino[2.3-a: 2′.3′-c]phenazine chloroform solvate. Acta Crystallogr. Sec. C C57, 199 (2001).
34.Lemaur, V., da Silva Filho, D.A., Coropceanu, V., Lehmann, M., Geerts, Y., Piris, J., Debije, M.G., van de Craats, A.M., Senthikumar, K., Siebbeles, L.D.A., Warman, J.M., Bredas, J.L., and Cornil, J.: Charge transport properties in discotic liquid crystals: A quantum-chemical insight into structure-property relationships. J. Am. Chem. Soc. 126, 3271 (2004).
35.Lehmann, M., Kestemont, G., Aspe, R.G., Buess-Herman, C., Koch, M.H.J., Debije, M.G., Piris, J., de Hass, M.P., Warman, J.M., Watson, M.D., Lemaur, V., Cornil, J., Geerts, Y.H., Gearba, R., and Ivanov, D.A.: High charge-carrier mobility in pi-deficient discotic mesogens: Design and structure-property relationship. Chemistry 11, 3349 (2005).
36.Kaafarani, B.R., Kondo, T., Yu, J., Zhang, Q., Dattilo, D., Risko, C., Jones, S.C., Barlow, S., Domercq, B., Amy, F., Kahn, A., Bredas, J.L., Kippelen, B., and Marder, S.R.: High charge-carrier mobility in an amorphous hexaazatrinaphthylene derivative. J. Am. Chem. Soc. 127, 16358 (2005).
37.Conboy, J.C., Olson, E.J.C., Adams, D.M., Kerimo, J., Zaban, A., Gregg, B.A., and Barbara, P.F.: Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films. J. Phys. Chem. B 102, 4516 (1998).
38.Mascaro, D.J., Thompson, M.E., Smith, H.I., and Bulovic, V.: Forming oriented organic crystals from amorphous thin films on patterned substrates via solvent-vapor annealing. Org. Electron. 6, 211 (2005).
39.Dickey, K.C., Anthony, J.E., and Loo, Y.L.: Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene. Adv. Mater. 18, 1721 (2006).
40.Datar, A., Oitker, R., and Zang, L.: Surface-assisted one-dimensional self-assembly of a perylene-based semiconductor molecule. Chem. Commun. 15, 1649 (2006).
41.De Luca, G., Liscio, A., Maccagnani, P., Nolde, F., Palermo, V., Mullen, K., and Samori, P.: Nucleation-governed reversible self-assembly of an organic semiconductor at surfaces: Long-range mass transport forming giant functional fibers. Adv. Funct. Mater. 17, 3791 (2007).
42.Kim, D.H., Park, Y.D., Jang, Y., Kim, S., and Cho, K.: Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films. Macromol. Rapid Commun. 26, 834 (2005).
43.Kim, D.H., Jang, Y., Park, Y.D., and Cho, K.: Controlled one-dimensional nanostructures in poly(3-hexylthiophene) thin film for high-performance organic field-effect transistors. J. Phys. Chem. B 110, 15763 (2006).
44.Kim, S.H., Misner, M.J., and Russell, T.P.: Solvent-induced ordering in thin film diblock copolymer/homopolymer mixtures. Adv. Mater. 16, 2119 (2004).
45.Xuan, Y., Peng, J., Cui, L., Wang, H., Li, B., and Han, Y.: Morphology development of ultrathin symmetric diblock copolymer film via solvent vapor treatment. Macromolecules 37, 7301 (2004).
46.Martin, R.B.: Comparisons of indefinite self-association models. Chem. Rev. 96, 3043 (1996).
47.Wurthner, F., Thalacker, C., and Sautter, A.: Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and pi–pi interactions. Adv. Mater. 11, 754 (1999).
48.Ishi-i, T., Yaguma, K., Kuwahara, R., Taguri, Y., and Mataka, S.: Self-assembling of n-type semiconductor tri(phenanthrolino)hexaazatriphenylenes with a large aromatic core. Org. Lett. 8, 585 (2006).
49.Liu, X.Y.: Gelation with small molecules: From formation mechanism to nanostructure architecture. Top. Curr. Chem. 256, 1 (2005).
50.Yamaguchi, T., Kimura, T., Matsuda, H., and Aida, T.: Macroscopic spinning chirality memorized in spin-coated films of spatially designed dendritic zinc porphyrin J-aggregates. Angew. Chem. Int. Ed. 43, 6350 (2004).
51.Xia, Y.N. and Whitesides, G.M.: Soft lithography. Angew. Chem. Int. Ed. 37, 550 (1998).
52.Park, J., Shim, S.O., and Lee, H.H.: Polymer thin-film transistors fabricated by dry transfer of polymer semiconductor. Appl. Phys. Lett. 86, 073505 (2005).
53.Briseno, A.L., Roberts, M., Ling, M.M., Moon, H., Nemanick, E.J., and Bao, Z.: Patterning organic semiconductors using “dry” poly(dimethylsiloxane) elastomeric stamps for thin film transistors. J. Am. Chem. Soc. 128, 3880 (2006).
54.Wang, Z., Zhang, J., Xing, R., Yuan, J., Yan, D., and Han, Y.: Micropatterning of organic semiconductor microcrystalline materials and OFET fabrication by “hot lift off.” J. Am. Chem. Soc. 125, 15278 (2003).
55.Park, S.Y., Kwon, T., and Lee, H.H.: Transfer patterning of pentacene for organic thin-film transistors. Adv. Mater. 18, 1861 (2006).
56.Oh, J.H., Lee, H.W., Mannsfeld, S., Stoltenberg, R.M., Jung, E., Jin, Y.W., Kim, J.M., Yoo, J.B., and Bao, Z.N.: Solution-processed, high-performance n-channel organic microwire transistors. Proc. Natl. Acad. Sci. USA. 106, 6065 (2009).
57.Briseno, A.L., Mannsfeld, S.C.B., Ling, M.M., Liu, S.H., Tseng, R.J., Reese, C., Roberts, M.E., Yang, Y., Wudl, F., and Bao, Z.N.: Patterning organic single-crystal transistor arrays. Nature 444, 913 (2006).
58.Wang, J.Z., Zheng, Z.H., Li, H.W., Huck, W.T.S., and Sirringhaus, H.: Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat. Mater. 3, 171 (2004).
59.Chabinyc, M.L., Wong, W.S., Salleo, A., Paul, K.E., and Street, R.A.: Organic polymeric thin-film transistors fabricated by selective dewetting. Appl. Phys. Lett. 81, 4260 (2002).

Keywords

Type Description Title
WORD
Supplementary materials

Yip Supplementary Material
Yip Supplementary Figures

 Word (3.9 MB)
3.9 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed