Skip to main content Accessibility help

Solution heteroepitaxial growth of dendritic SnO2/TiO2 hybrid nanowires

  • Chuanwei Cheng (a1), Yee Yan Tay (a2), Huey Hoon Hng (a2) and Hong Jin Fan (a3)


We exploit a facile synthetic route to fabricate dendritic SnO2/TiO2 nanodentrites with a twofold point symmetry by a combination of vapor transport deposition method for the SnO2 nanowire backbones and subsequent hydrothermal heteroepitaxial growth of TiO2 nanorod branches. As a result of the good lattice matching and same rutile crystal structures between SnO2 and TiO2, an interface epitaxy is established accounting for the high symmetry. Proof-of-principle demonstration of the function in photoelectrochemical water splitting is presented.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Yan, H.Q., He, R.R., Johnson, J., Law, M., Saykally, R.J., and Yang, P.D.: Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125, 4728 (2003).
2.Xiang, J., Vidan, A.R., Westervelt, M., and Lieber, C.M.: Ge/Si nanowire mesoscopic Josephson junctions. Nat. Nanotechnol. 1, 208 (2006).
3.Dick, K.A., Deppert, K., Larsson, M.W., Mårtensson, T., Seifert, W., Wallenberg, L.R., and Samuelson, L.: Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3, 380 (2004).
4.Matthew, J.B. and Song, J.: Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2, 1050 (2009).
5.Cheng, C.W., Liu, B., Sie, E.J., Zhou, W.W., Zhang, J.X., Gong, H., Huan, C.H.A., Sum, T.C., Sun, H.D., and Fan, H.J.: ZnCdO/ZnO coaxial multiple quantum well nanowire heterostructures and optical properties. J. Phys. Chem. C 114, 3863 (2010).
6.Qian, F., Li, Y., Gradecak, S., Park, H.G., Dong, Y.J., Ding, Y., Wang, Z.L., and Lieber, C.M.: Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701 (2008).
7.Mieszawska, J., Jalilian, R., Sumanasekera, G.U., and Zamborini, F.P.: The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small 3, 722 (2007).
8.Lin, Y.J., Zhou, S., Liu, X.H., Sheehan, S., and Wang, D.W.: TiO2/TiSi2 heterostructures for high-efficiency photoelectrochemical H2O splitting. J. Am. Chem. Soc. 131, 2772 (2009).
9.Hwang, Y.J., Boukai, A., and Yang, P.D.: High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9, 410 (2009).
10.Dong, A.G., Tang, R., and Buhro, W.E.: Solution-based growth and structural characterization of homo- and hetero-branched semiconductor nanowires. J. Am. Chem. Soc. 129, 12254 (2007).
11.Chen, C.H., Jin, L., Espinal, A.E., Firliet, B.T., Xu, L.P., Aindow, M., Joesten, R., and Suib, S.L.: Heteroepitaxial growth of nanoscale oxide shell/fiber superstructures by mild hydrothermal processes. Small 6, 988 (2010).
12.Fan, F.R., Ding, Y., Liu, D.Y., Tian, Z.Q., and Wang, Z.L.: Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J. Am. Chem. Soc. 131, 12026 (2009).
13.Zhang, D.F., Sun, L.D., Jia, C.J., Yan, Z.G., You, L.P., and Yan, C.H.: Hierarchical assembly of SnO2 nanorod arrays on alpha-Fe2O3 nanotubes: A case of interfacial lattice compatibility. J. Am. Chem. Soc. 127, 13492 (2005).
14.Wang, N.X., Sun, C.H., Zhao, Y., Zhou, S.Y., Chen, P., and Jiang, L.: Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process. J. Mater. Chem. 18, 3909 (2008).
15.Gubbala, S., Chakrapani, V., Kumar, V., and Sunkara, M.K.: Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv. Funct. Mater. 18, 2411 (2008).
16.Qian, J.F., Liu, P., Xiao, Y., Jiang, Y., Cao, Y.L., Ai, X.P., and Yang, H.X.: TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv. Mater. 21, 3663 (2009).
17.Feng, X.J., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., and Grimes, C.A.: Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 8, 3781 (2008).
18.O’Regan, B. and Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).
19.Tan, E.T.H., Ho, G.W., Wong, A.S.W., Kawi, S., and Wee, A.T.S.: Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method. Nanotechnology 19, 255706 (2008).
20.Cheng, C.W., Liu, B., Yang, H.Y., Zhou, W.W., Sun, L., Chen, R., Yu, S.F., Zhang, J.X., Gong, H., Sun, H.D., and Fan, H.J.: Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: Low-temperature hydrothermal preparation and optical properties. ACS Nano 3, 3069 (2009).
21.Kuykendall, T., Pauzauskie, P.J., Zhang, Y., Goldberger, J., Sirbuly, D., Denlinger, J., and Yang, P.D.: Crystallographic alignment of high density gallium nitride nanowire arrays. Nat. Mater. 3, 524 (2004).
22.Ding, Y., Gao, P.X., and Wang, Z.L.: Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: A case of Sn/ZnO. J. Am. Chem. Soc. 126, 2066 (2004).
23.Zhou, W.W., Cheng, C.W., Liu, J.P., Jia, X.T., Zhang, J.X., Gong, H., Ting, Yu., and Fan, H.J.: Epitaxial growth of branched α-Fe2O3/SnO2 nanoheterostructure with improved lithium-ion battery performance. Adv. Funct. Mater. (2011, DOI: 10.1002/adfm.201100088).
24.Cheng, C.W., Yan, B., Wong, S.M., Li, X.L., Zhou, W., Yu, T., Shen, Z.X., Yu, H.Y., and Fan, H.J.: Fabrication and SERS performance of silver nanoparticles-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2, 1824 (2010).
25.Zhang, Z., Hossain, M.F., and Takahashi, T.: Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int. J. Hydrogen Energy 35, 8528 (2010).
26.Banerjee, S., Mohapatra, S.K., Das, P.P., and Misra, M.: Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20, 6784 (2008).
27.Lin, C.J., Lu, Y.T., Hsieh, C.H., and Chien, S.H.: Surface modification of highly ordered TiO2 nanotube arrays for efficient photoelectrocatalytic water splitting. Appl. Phys. Lett. 94, 113102 (2009).


Solution heteroepitaxial growth of dendritic SnO2/TiO2 hybrid nanowires

  • Chuanwei Cheng (a1), Yee Yan Tay (a2), Huey Hoon Hng (a2) and Hong Jin Fan (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed