Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T18:58:09.641Z Has data issue: false hasContentIssue false

Sol-gel synthesis of rare-earth-doped fluoride glass thin films

Published online by Cambridge University Press:  31 January 2011

John Ballato
Affiliation:
Rutgers, The State University of New Jersey, Fiber Optic Materials Research Program, Piscataway, New Jersey 08855–0909
Matthew Dejneka
Affiliation:
Rutgers, The State University of New Jersey, Fiber Optic Materials Research Program, Piscataway, New Jersey 08855–0909
Richard E. Riman
Affiliation:
Rutgers, The State University of New Jersey, Fiber Optic Materials Research Program, Piscataway, New Jersey 08855–0909
Elias Snitzer
Affiliation:
Rutgers, The State University of New Jersey, Fiber Optic Materials Research Program, Piscataway, New Jersey 08855–0909
Weimin Zhou
Affiliation:
U.S. Army Research Laboratory, Physical Sciences Directorate, Photonics Branch, AMSRL-PS-P Fort Monmouth, New Jersey 07703–5601
Get access

Abstract

This paper describes ZBLA fluoride glass thin films produced via an inexpensive, low-temperature reactive atmosphere sol-gel approach. Luminescence from erbium at 1.55 μm has been observed in x-ray-amorphous doped films deposited on calcium fluoride, polyimide, sapphire, and silicon substrates. Fluorescence studies of the erbium 4S3/24I13/2 transition, a characteristic emission for a reduced phonon energy host, were conducted for both sol-gel-derived films and conventionally prepared glass rods. The peak intensity observed from the sol-gel films was blue-shifted by 16 nm with a FWHM value approximately half that measured for the melt-quenched rods. Excitation studies indicate that, unlike conventionally prepared glasses, sol-gel materials suffer from nonradiative relaxation of the 4S3/2 excited state to the 4I9/2 level, where subsequent radiative emission to the 4I15/2 ground state occurs. The proposed source of the quenching mechanism are remnant species inherent to the sol-gel process. While this causes the luminescence behavior of rare-earth-doped sol-gel-derived fluoride materials to be similar to oxide hosts, these remnant species modify the branching ratios, resultantly leading to a novel 824 nm emission when excited at 488 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goodman, M. S. and Arthurs, E., in Integrated Optoelectronics, edited by Dagenais, M., Leheny, R. F., and Crow, J. (Academic Press, New York, 1995), pp. 329.Google Scholar
2.Gatzke, R., Ceram. Bull. 68, 19461948 (1989).Google Scholar
3.Bruce, A. J., Zydzik, G., and Chui-Sabourin, M., in Materials Science Forum (Trans Tech Publications, Switzerland, 1991), Vols. 67 and 68, pp. 377384.Google Scholar
4.Jacoboni, C., Boulard, B., Baniel, P., and Poignant, H., in Materials Science Forum (Trans Tech Publications, Switzerland, 1987), Vols. 19 and 20, pp. 253258.Google Scholar
5.Fujiura, K., Nishida, Y., Sato, H., Sugawara, S., Kobayashi, K., Terunuma, Y., and Takahashi, S., J. Non-Cryst. Solids 161, 1417 (1993).CrossRefGoogle Scholar
6.Poignant, H., LeMellot, J., and Bossis, Y., in Materials Science Forum (Trans Tech Publications, Switzerland, 1985), Vol. 5, pp. 7984.Google Scholar
7.Almeida, R. M. and Morais, P. J., J. Non-Cryst. Solids 184, 9397 (1995).CrossRefGoogle Scholar
8.Joubert, M.F., Remillieux, A., Jacquier, B., Mugnier, J., Boulard, B., Perrot, O., and Jacoboni, C., J. Non-Cryst. Solids 184, 341345 (1995).Google Scholar
9.Charron, C., Fogret, E., Fonteneau, G., Rimet, R., and Lucas, J., J. Non-Cryst. Solids 184, 222224 (1995).Google Scholar
10.Ko, S., Doremus, R., Guo, X. S., and Landford, W., J. Mater. Res. 5, 202205 (1990).Google Scholar
11.Melling, P. J. and Thompson, M. A., J. Mater. Res. 5, 10921094 (1990).Google Scholar
12.Mailhot, A. M., Elyamani, A., and Riman, R. E., J. Mater. Res. 7, 15341540 (1992).CrossRefGoogle Scholar
13.Eamsiri, J., Leaustic, A., Elyamani, A., and Riman, R. E., in Chemical Processing of Advanced Materials, edited by Hench, L. L. and West, J.K. (John Wiley / Sons, Inc., New York, 1992), pp. 981987.Google Scholar
14.Dejneka, M., Riman, R. E., and Snitzer, E., J. Am. Ceram. Soc. 76, 31473150 (1993).Google Scholar
15.Riman, R. E., Dejneka, M., Ballato, J., and Snitzer, E., Eur. J. Solid State Inorg. Chem. 32, 873882 (1995).Google Scholar
16.Dejneka, M., Ph.D. Thesis, Rutgers University (1995).Google Scholar
17.Dejneka, M., Pierce, D., Riman, R. E., and Snitzer, E., unpublished.Google Scholar
18.Miniscalco, W. J., in Rare Earth Doped Fiber Lasers and Amplifiers, edited by Digonnet, M. J. F. (Marcell Dekker, Inc., New York, 1993), Chap. 2, pp. 19134.Google Scholar
19.Pope, E. J. A. and Mackenzie, J. D., J. Non-Cryst. Solids 106, 236241 (1988).Google Scholar
20.Riseberg, L. A. and Weber, M. J., in Progress in Optics, edited by Wolf, E. (North-Holland, Amsterdam, 1976), Vol. XIV.Google Scholar
21.Auzel, F., in Luminescence of Inorganic Solids, edited by DiBartolo, B. (Plenum, New York, 1978).Google Scholar
22.Riseberg, L. A., in Radiationless Processes, edited by DiBartolo, B. (Plenum, New York, 1980).Google Scholar
23.Layne, C. B., Lowdermilk, W.H., and Weber, M.J., Phys. Rev. B 16, 1020 (1977).Google Scholar
24.Reisfeld, R., European Research Office, Final Report DAERO-76-G-066 (1979).Google Scholar
25.Riseberg, L. A. and Moos, H. W., Phys. Rev. 174, 429438 (1968).Google Scholar
26.Layne, C. B. and Weber, M.J., Phys. Rev. B 16, 32593261 (1977).Google Scholar
27.Judd, B. R., Phys. Rev. 127, 750761 (1962).Google Scholar
28.Ofelt, G. S., J. Chem. Phys. 37, 511520 (1962).Google Scholar
29.Ballato, A., Proc. 42nd Annual Frequency Control Symposium, Baltimore, MD (1988), pp. 613; J.F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, UK, 1985).Google Scholar
30. For a pictorial representation of L-S and j-j coupling, see, for example: von Hippel, A., Dielectrics and Waves, (MIT Press, Cambridge, MA, 1954), p. 130; or, the reprinted version: A. von Hippel, Dielectrics and Waves (Artech House, Boston, MA, 1995), p. 130.Google Scholar
31.Morrison, C. A., U.S. Army Research Laboratory, Technical Report ARL-TR-708 (1995).Google Scholar
32.Reisfeld, R., Katz, G., Spector, N., Jørgensen, C. K., Jacoboni, C., and DePape, R., J. Solid State Chem. 41, 253261 (1982).Google Scholar
33.Patek, K., Glass Lasers (Butterworth / Co., London, 1970).Google Scholar
34.Reisfeld, R. and Jørgensen, C. K., Lasers and Excited States of Rare-Earths (Springer-Verlag, New York, 1977).Google Scholar
35.Reisfeld, R., in Structure and Bonding (Springer-Verlag, New York, 1975), Vol. 22, pp. 123175.Google Scholar
36.Peacock, R. D., in Structure and Bonding (Springer-Verlag, New York, 1975), Vol. 22, pp. 83122.Google Scholar
37.Shinn, M.D., Sibley, W.A., Drexhage, M. G., and Brown, R.N., Phys. Rev. B 27, 66356648 (1983).Google Scholar
38.Reisfeld, R., Katz, G., Jacoboni, C., DePape, R., Drexhage, M. G., Brown, R. N., and Jørgensen, C. K., J. Solid State Chem. 48, 323332 (1983).Google Scholar