Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T04:59:26.168Z Has data issue: false hasContentIssue false

Small-angle x-ray scattering studies of early-stage colloid formation by thermohydrolytic polymerization of aqueous zirconyl salt solutions

Published online by Cambridge University Press:  26 July 2012

Michael Z-C. Hu
Affiliation:
Oak Ridge National Laboratory,b)Oak Ridge, Tennessee 37831-6224
Jason T. Zielke
Affiliation:
Oak Ridge National Laboratory,b)Oak Ridge, Tennessee 37831-6224
J-S. Lin
Affiliation:
Oak Ridge National Laboratory,b)Oak Ridge, Tennessee 37831-6224
Charles H. Byers
Affiliation:
Oak Ridge National Laboratory,b)Oak Ridge, Tennessee 37831-6224
Get access

Extract

Early-stage processes involving the polymerization of zirconium species in aqueous solutions at elevated temperatures (∼100 °C) as well as colloid formation were studied. Small-angle x-ray scattering (SAXS) data were analyzed via Guinier, “longrods,” and Porod plots to determine particle growth kinetics and morphology. Our SAXS data suggest that zirconium tetramers and octamers polymerize into larger clusters and elongated-rod-(or needle)-shaped primary particles, which have a length of a few nanometers and a radius of gyration of cross section between 4 and 5 Å. Cube-shaped particles are aggregates of the needlelike primary particles. The transition from zirconium tetramer to a colloidal sol particle follows a mass-fractal growth (1 < fractal dimension, D <3)

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Matijević, E., Progr. Colloid Polymer Sci. 61, 24 (1976).CrossRefGoogle Scholar
2.Matijević, E., Langmuir 10, 8 (1994).CrossRefGoogle Scholar
3.Clearfield, A., Inorg. Chem. 3, 146 (1964a).CrossRefGoogle Scholar
4.Clearfield, A., Rev. Pure Appl. Chem. 14, 91 (1964b).Google Scholar
5.Sariçimen, H., Powder Technol. 27, 23 (1980).CrossRefGoogle Scholar
6.Tani, E., Yoshimura, M., and Sōmiya, S., J. Am. Ceram. Soc. C-181 (1981).Google Scholar
7.Morgan, P.E. D., J. Am. Ceram. Soc. C-204 (1984).Google Scholar
8.Blesa, M.A., Maroto, A.J. G., Passaggio, S. I., Figliolia, N. E., and Rigotti, G., J. Mater. Sci. 20, 4601 (1985).CrossRefGoogle Scholar
9.Bleier, A. and Cannon, R. M., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 71.Google Scholar
10.Huang, Y-X. and Guo, C-J., Powder Technol. 72, 101 (1992).Google Scholar
11.Moon, Y.T., Kim, D.K., and Kim, C.H., J. Am. Ceram. Soc. 78, 1103 (1995).CrossRefGoogle Scholar
12.Siegel, R.W., Sci. Am. December, 74 (1996).CrossRefGoogle Scholar
13.Toth, L.M., Lin, J. S., and Felker, L.K., J. Phys. Chem. 95, 3106 (1991).CrossRefGoogle Scholar
14.Singhal, A., Toth, L. M., Lin, J. S., and Affholter, K., J. Am. Chem. Soc. 118, 11529 (1996).CrossRefGoogle Scholar
15.Clearfield, A., J. Mater. Res. 5, 161 (1990).CrossRefGoogle Scholar
16.Juston, J. A., Richardson, R. M., Jones, S. L., and Norman, C., in Better Ceramics Through Chemistry IV, edited by Zelinsky, B.J. J., Brinker, C.J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 123.Google Scholar
17.Henry, M., Jolivet, J. P., and Livage, J., Struct. Bond. 77, 153 (1992).CrossRefGoogle Scholar
18.Livage, J., Chatry, M., Henry, M., and Taulelle, F., in Better Ceramics Through Chemistry V, (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 201.Google Scholar
19.Byers, C.H., Harris, M.T., and Williams, D.F., Ind. Eng. Chem. Res. 26, 1916 (1987).CrossRefGoogle Scholar
20.Guinier, A. and Fournet, G., Small Angle Scattering of X-rays (John Wiley, New York, 1955).Google Scholar
21.Guinier, A., Ann. Phys. 12 161 (1939).CrossRefGoogle Scholar
22.Martin, J. E. and Hurd, A. J., J. Appl. Crystallogr. 20, 61 (1987).CrossRefGoogle Scholar
23.Jullien, R. and Botet, R., Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).Google Scholar
24.Teixeira, J., J. Appl. Crystallogr. 21, 781 (1988).CrossRefGoogle Scholar
25.Schmidt, P.W., The Fractal Approach to Heterogeneous Chemistry, edited by Avnir, D. (John Wiley & Sons, New York, 1989), p. 67.Google Scholar
26.Bunde, A. and Havlin, S., Fractals and Disordered Systems (Springer-Verlag, New York, 1991).CrossRefGoogle Scholar
27.Hu, M.Z-C., Harris, M.T., and Byers, C. H., J. Colloid Inter. Sci. 198, 87 (1998).CrossRefGoogle Scholar
28.Muha, G.M. and Vaughan, P.A., J. Chem. Phys. 33, 194 (1960).CrossRefGoogle Scholar
29.Åberg, M., Acta Chem. Scand. A 31, 171 (1964).Google Scholar
30.Åberg, M. and Glaster, J., Inorg. Chim. Acta 206, 53 (1993).CrossRefGoogle Scholar
31.Hannane, S., Bertin, F., and Bouix, J., Bull. Soc. Chem. Fr. 127, 43 (1990).Google Scholar
32.Angstadt, R.L. and Tyree, S. Y., J. Inorg. Nucl. Chem. 24, 913 (1962).CrossRefGoogle Scholar
33.Johnson, J. A. and Kraus, K.A., J. Am. Chem. Soc. 78, 3937 (1956).CrossRefGoogle Scholar
34.Clearfield, A. and Vaughan, P. A., Acta Crystallogr. 9, 555 (1956).CrossRefGoogle Scholar
35.Mak, T.C. W., Can. J. Chem. 46, 3491 (1968).CrossRefGoogle Scholar
36.Atherton, M.D. and Sutcliffe, H., J. Less-Common Met. 138, 63 (1988).CrossRefGoogle Scholar
37.Lee, K. and McCormick, A., personal communication, University of Minnesota, Minneapolis, Minnesota.Google Scholar
38.Hench, L.L. and West, J. K., Chem. Rev. 90, 33 (1990).CrossRefGoogle Scholar
39.Pope, E.J. A., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W. G., and Brinker, C. J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 213.Google Scholar
40.Schaefer, D.W. and Keefer, K.D., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA 1986), p. 277.Google Scholar