Skip to main content Accessibility help

Size-dependent carrier dynamics and activation energy in CdTe/ZnTe quantum dots on Si substrates

  • Ju Hyung Lee (a1), Jin Chul Choi (a1) and Hong Seok Lee (a2)


We investigate the size-dependent carrier dynamics and activation energy in cadmium telluride/zinc telluride (CdTe/ZnTe) quantum dots (QDs) grown on silicon (Si) substrates. Photoluminescence (PL) spectra show that the excitonic peak corresponding to transitions from the ground electronic subband to the ground heavy-hole band in CdTe/ZnTe QDs shifts to a lower energy level with increasing CdTe thickness, owing to an increase in the size of the CdTe QDs. Time-resolved PL measurements performed to study the carrier dynamics reveal a longer exciton lifetime for CdTe/ZnTe QDs with increasing CdTe thickness on account of the reduction of the exciton oscillator strength resulting from a strong built-in electric field in the larger QDs. The activation energy of the electrons confined in the CdTe/ZnTe QDs, as obtained from the temperature-dependent PL spectra, increases with increasing CdTe thickness. These results indicate that the carrier dynamics and activation energy of CdTe/ZnTe QDs are affected by the size of the CdTe QDs.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Koppens, F.H.L., Buizert, C., Tielrooij, K.J., Vink, I.T., Nowack, K.C., Meunier, T., Kouwenhoven, L.P., and Vandersypen, L.M.K.: Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766 (2006).
2.Quarterman, A.H., Wilcox, K.G., Apostolopoulos, V., Mihoubi, Z., Elsmere, S.P., Farrer, I., Ritchie, D.A., and Tropper, A.: A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nat. Photonics 3, 729 (2009).
3.Anikeeva, P.O., Halpert, J.E., Bawendi, M.G., and Bulovic, V.: Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532 (2009).
4.Lim, H., Tsao, S., Zhang, W., and Razeghi, M.: High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature. Appl. Phys. Lett. 90, 131112 (2007).
5.Guimard, D., Morihara, R., Bordel, D., Tanabe, K., Wakayama, Y., Nishioka, M., and Arakawa, Y.: Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. Appl. Phys. Lett. 96, 203507 (2010).
6.Lei, W., Notthoff, C., Offer, M., Meier, C., Lorke, A., Jagadish, C., and Wieck, A.D.: Electron energy structure of self-assembled In(Ga)As nanostructures probed by capacitance-voltage spectroscopy and one-dimensional numerical simulation. J. Mater. Res. 24, 2179 (2009).
7.De, A. and Pryor, C.E.: Predicted band structures of III-V semiconductors in the wurtzite phase. Phys. Rev. B 81, 155210 (2010).
8.Kirmse, H., Schneider, R., Rabe, M., Neumann, W., and Henneberger, F.: Transmission electron microscopy investigation of structural properties of self-assembled CdSe/ZnSe quantum dots. Appl. Phys. Lett. 72, 1329 (1998).
9.Pelekanos, N., Ding, J., Nurmikko, A.V., Luo, H., Samarth, N., and Furdyna, J.K.: Quasi-two-dimensional excitons in (Zn, Cd)Se/ZnSe quantum wells: Reduced exciton-LO-phonon coupling due to confinement effects. Phys. Rev. B 45, 6037 (1992).
10.Moussaouy, A. El, Bria, D., Nougauoi, A., Charrour, R., and Bouhassoune, M.: Exciton-phonon coupled states in CdTe/Cd1-xZnxTe quantum dots. J. Appl. Phys. 93, 2906 (2003).
11.Patton, B., Langbein, W., Woggon, U., Maingault, L., and Mariette, H.: Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots. Phys. Rev. B 73, 235354 (2006).
12.Han, W.I., Lee, J.H., Yu, J.S., Choi, J.C., and Lee, H.S.: Carrier dynamics and activation energy of CdTe quantum dots in a CdxZn1-xTe quantum well. Appl. Phys. Lett. 99, 231908 (2011).
13.Chen, Y.P., Sivananthan, S., and Faurie, J.P.: Structure of CdTe(111)B grown by MBE on misoriented Si(001). J. Electron. Mater. 22, 951 (1993).
14.Smith, D.J., Tsen, S-C.Y., Chen, Y.P., Faurie, J-P., and Sivananthan, S.: Microstructure of heteroepitaxial CdTe grown on misoriented Si(001) substrates. Appl. Phys. Lett. 67, 1591 (1995).
15.Marsal, L., Besombes, L., Tinjod, F., Kheng, K., Wasiela, A., Gilles, B., Rouvière, J-L., and Mariette, H.: Zero-dimensional excitons in CdTe/ZnTe nanostructures. J. Appl. Phys. 91, 4936 (2002).
16.Lee, H.S., Yim, S-Y., Lee, I.W., and Kim, T.W.: Size-dependent carrier dynamics in self-assembled CdTe/ZnTe quantum dots. J. Lumin. 132, 1581 (2012).
17.Woo, J.T., Song, S.H., Lee, I., Kim, T.W., Yoo, K.H., Lee, H.S., and Park, H.L.: Strain distributions and electronic subband energies of self-assembled CdTe quantum wires grown on ZnTe buffer layers. J. Appl. Phys. 106, 113530 (2009).
18.Karczewski, G., Maćkowski, S., Kutrowski, M., Wojtowicz, T., and Kossut, J.: Photoluminescence study of CdTe/ZnTe self-assembled quantum dots. Appl. Phys. Lett. 74, 3011 (1998).
19.Leon, R., Kim, Y., Jagadish, C., Gai, M., Zou, J., and Cockayne, D.J.H.: Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots. Appl. Phys. Lett. 69, 1888 (1996).
20.Couteau, C., Moehl, S., Tinjod, F., Gérard, J.M., Kheng, K., and Mariette, H.: Correlated photon emission from a single II-VI quantum dot. Appl. Phys. Lett. 85, 6251 (2004).
21.Labeau, O., Tamarat, P., and Lounis, B.: Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257404 (2003).
22.Kako, S., Miyamura, M., Tachibana, K., Hoshino, K., and Arakawa, Y.: Size-dependent radiative decay time of excitons in GaN/AlN self-assembled quantum dots. Appl. Phys. Lett. 83, 984 (2003).
23.Benyoucef, M., Rastelli, A., Schmidt, O.G., Ulrich, S.M., and Michler, P.: Temperature dependent optical properties of single, hierarchically self-assembled GaAs/AlGaAs quantum dots. Nanoscale Res. Lett. 1, 172 (2006).
24.Williams, E.W. and Bebb, H.B.: Semiconductors and Semimetals, Vol. 8, edited by Willardson, R.K. and Beer, A.C. (Academic Press, New York, 1992), p. 321.
25.Lee, H.S., Park, H.L., and Kim, T.W.: Dimensional structural transition in CdTe/CdxZn1-xTe nanostructures. Appl. Phys. Lett. 85, 5598 (2004).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed