Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-17T23:05:16.788Z Has data issue: false hasContentIssue false

Size-controlled synthesis of nanocrystalline BaTiO3 by a sol-gel type hydrolysis in microemulsion-provided nanoreactors

Published online by Cambridge University Press:  31 January 2011

Ch. Beck
Affiliation:
Physikalische Chemie, Universität Saarbrücken, D-66123 Saarbrücken, Germany
W. Härtl
Affiliation:
Physikalische Chemie, Universität Saarbrücken, D-66123 Saarbrücken, Germany
R. Hempelmann*
Affiliation:
Physikalische Chemie, Universität Saarbrücken, D-66123 Saarbrücken, Germany
*
a)Address correspondence to this author.
Get access

Abstract

Using the hydrolysis of appropriate alkoxide mixtures in water-in-oil microemulsions, nanocrystalline BaTiO3 has been prepared in the form of nonaggregated, cube-shaped crystals at room temperature without any sintering process as is demonstrated by means of x-ray diffractograms and transmission electron micrographs. By variation of the length of the hydrophilic part of the surfactant molecules, the diameter of the water droplets in the microemulsions could be tuned to values between 8 and 55 nm as determined by dynamic light scattering. The size of the resulting nano-BaTiO3 (6 nm ≤ 〈dvol ≤ 17 nm) was evaluated from the line broadening of x-ray reflections and correlates to the droplet size. The particle size distribution is very narrow, and in some cases nearly monodisperse.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H, Prog. Mater. Science 33, 223 (1989).Google Scholar
2.Candlish, L. E., Kear, B. H., and Kim, B. H., Nanostructured Materials, 1, 119 (1992).CrossRefGoogle Scholar
3.Lutton, M. J., Matras, S., Vollone, J., and Hellum, E.Nanostructured Materials, 3, 225 (1992).Google Scholar
4.Birringer, R. and Gleiter, H., in Encyclopedia of Materials Science, edited by Cahn, R. W. (Pergamon Press, Oxford, 1988), p. 339.Google Scholar
5.Special Section in Science 254, 1300 (1972).Google Scholar
6.Soetratmo, M., Natter, H., Hempelmann, R, Hartmann, O., äppling, R., and Ekström, M.Hyperfine Interactions, 105, 245 (1997).Google Scholar
7.Richter, H., Wang, Z. P., and Ley, L., Solid State Commun. 39, 625 (1988).Google Scholar
8.Natter, H., Krajewski, T., and Hempelmann, R., Ber. Bunsenges. Phys. Chem. 55, 55 (1996).Google Scholar
9.Natter, H. and Hempelmann, R., J. Phys. Chem. 100, 19,525 (1996).CrossRefGoogle Scholar
10.Erb, U., Nanostructured Materials, 6, 533 (1995).Google Scholar
11.Kumar, P., Pillai, V., and Shah, D. O., Appl. Phys. Lett. 62, 765 (1993).CrossRefGoogle Scholar
12.Pathak, A., Mukhopadhyay, D. K., and Pramanik, P., Mater. Res. Bull. 27, 155 (1992).CrossRefGoogle Scholar
13.Chen, F. H., Koo, H. S., Tseng, T. Y., Lin, R. S., and Wu, P. R., Mater. Lett. 8, 228 (1989).Google Scholar
14.Sager, W., Eicke, H. F., and Sun, W., Colloids Surf. 79, 1992 (1993).CrossRefGoogle Scholar
15.Phule, P. and Risbud, S. H., J. Mater. Sci. 25, 1169 (1990).CrossRefGoogle Scholar
16.Osseo-Assare, K. and Arriagada, F. J., in Ceramic Trans. Vol. 12, Ceramic Powder Science 3, edited by Messing, G. L., Hirano, S., and Hausner, H. (American Ceramic Society, Westerville, OH, 1990), p. 3.Google Scholar
17.Schlag, S., Eicke, H. F., Mathys, D., and Guggenheim, R., Langmuir 10, 3357 (1994).Google Scholar
18.Herrig, H. and Hempelmann, R., Mater. Lett. 27, 287 (1996).CrossRefGoogle Scholar
19.Herrig, H. and Hempelmann, R., Nanostructured Mater. 9, 241 (1997).CrossRefGoogle Scholar
20.Schulman, J. H and Riley, D. P., J. Colloid Sci. 3, 383 (1988).Google Scholar
21.Schulman, J. H and Friend, J. A., J. Colloid Sci. 4, 1971 (1988).Google Scholar
22.Stoeckenius, W., Schulman, J. H., and Prince, L. M., Kolloid-Z. 170, 169 (1960).Google Scholar
23.Hoffman, H. and Ulbricht, W., Chem. i. uns. Zeit 29, 76 (1995)CrossRefGoogle Scholar
24.Prince, L. M., in Emulsions and Emulsions Technology I (Surfactant Science Series 6, Marcel Dekker, New York, 1974), p. 125.Google Scholar
25.Lissant, K. J., in Emulsions and Emulsions Technology III (Surfactant Science Series 6, Marcel Dekker, New York, 1984), p. 181.Google Scholar
26.Dörfler, H. D., Grenzflächen und Kolloidchemie (VCH, Weinheim, Germany, 1994), p. 234.Google Scholar
27.Warren, B. E and Averbach, B. L., J. Appl. Phys. 21, 595 (1950); 23, 497 (1952).Google Scholar
28.Smith, W. L., J. Appl. Crystallogr. 9, 187 (1976).CrossRefGoogle Scholar
29.Krill, C. E. and Birringer, R., Philos. Mag. A. 77, 621 (1998).Google Scholar
30.Berne, B. J. and Pecora, R., J. Phys. Chem. 88, 3026 (1984).Google Scholar
31.Chu, B., Laser Light Scattering (Academic Press, New York, 1991).Google Scholar
32.Provencher, S. W., Comput. Phys. Commun. 27, 229 (1982); 27, 213 (1982).Google Scholar
33.Mazdiyasni, K. S and Dolloff, R. T., J. Am. Ceram. Soc. 52, 523 (1969).Google Scholar
34.Bruch, wCh., Krüger, J. K., Unruh, H-G., Krauss, W., Zimmermeister, B, Beck, Ch., and Hempelmann, R., Ber. Bunsenges. Phys. Chem. 101, 1761 (1997).Google Scholar
35.Scalabrin, A., Chaves, A. S., Shiem, D. S., and Porto, S. P. S., Phys. Status Solidi (b) 79, 731 (1977).CrossRefGoogle Scholar
36.Gissibl, B., Wilhelm, D., Würschum, R., Herrig, H., Müller, F., Kelsch, M., Reimann, K, Philipp, F., Beck, H. P., Hempelmann, R. and Schaefer, H-E.Nanostructured Materials, 9, 619 (1997).Google Scholar
37.Meyer, F., Thesis, Saarbrücken, unpublished.Google Scholar