Skip to main content Accessibility help
×
Home

Size effects on the nanomechanical properties of cellulose I nanocrystals

  • Anahita Pakzad (a1), John Simonsen (a2), Patricia A. Heiden (a3) and Reza S. Yassar (a4)

Abstract

The ultimate properties of a fibrous composite system depend highly on the transverse mechanical properties of the fibers. Here, we report the size dependency of transverse elastic modulus in cellulose nanocrystals (CNCs). In addition, the mechanical properties of CNCs prepared from wood and cotton resources were investigated. Nanoindentation in an atomic force microscope (AFM) was used in combination with analytical contact mechanics modeling (Hertz model) and finite element analysis (FEA) to estimate the transverse elastic moduli (Et) of CNCs. FEA modeling estimated the results more accurately than the Hertz model. Based on the AFM–FEA calculations, wood CNCs had higher transverse elastic moduli in comparison to the cotton CNCs. Additionally, Et was shown to increase with a reduction in the CNCs’ diameter. This size-scale effect was related to the Iα/Iβ ratio and crystalline structure of CNCs.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: reza@mtu.edu

References

Hide All
1.Beck-Candanedo, S., Roman, M., and Gray, D.G.: Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6, 1048 (2005).
2.Bondeson, D., Mathew, A., and Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171 (2006).
3.Turbark, A., Snyder, F., and Sandberg, K.: Microfibrillated cellulose, a new cellulose product: Properties, uses and commercial potential. J. Appl. Polym. Sci. 37, 815 (1983).
4.Taniguchi, T. and Okamura, K.: New films produced from microfibrillated natural fibres. Polym. Int. 47, 291 (1998).
5.Zimmermann, T., Pöhler, E., and Geiger, T.: Cellulose fibrils for polymer reinforcement. Adv. Eng. Mater. 6, 754 (2004).
6.Azizi Samir, M., Alloin, F., and Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their applications in nanocomposite field. Biomacromolecules 6, 612 (2005).
7.Favier, V., Chanzy, H., and Cavaille, J.Y.: Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28, 6365 (1995).
8.Auad, M.L., Contos, V.S., Nutt, S., Aranguran, M., and Marcovich, N.E.: Characterization of nanocellulose reinforced shape memory polyurethanes. Polym. Int. 57, 651 (2008).
9.Cao, X., Dong, H., and Li, C.M.: New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8, 899 (2007).
10.Kvien, I., Sugiyama, J., Votrubec, M., and Oksman, K.: Characterization of starch based nanocomposites. J. Mater. Sci. 42, 8163 (2007).
11.Lapa, V.L.C., Suarez, J.C.M., Visconte, L.L.Y., and Nunes, R.C.R.: Fracture behavior of nitrile rubber-cellulose II nanocomposites. J. Mater. Sci. 42, 9934 (2007).
12.Liu, H. and Brinson, L.C.: Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites. Compos. Sci. Technol. 68, 1502 (2008).
13.Long, D. and Lequeux, F.: Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371 (2001).
14.Meyer, K.H. and Lotmar, W.: On the elasticity of the cellulose. (On the constitution of the partially crystallized cellulose IV). Helv. Chim. Acta 19, 68 (1936).
15.Sakurada, I., Nukushina, Y., and Ito, T.: Experimental determination of the elastic modulus of the crystalline regions in oriented polymers. J. Polym. Sci. 57, 651 (1962).
16.Sakurada, I., Ito, T., and Nakamae, K.: Elastic moduli of polymer crystals for the chain axial direction. Macromol. Chem. Phys. 75, 1 (1964).
17.Jaswon, A., Gillis, P.P., and Mark, R.E.: The elastic constants of crystalline native cellulose. Proc. R. Soc. London, Ser. A 306, 389 (1968).
18.Tashiro, K. and Kobayashi, M.: Calculation of crystallite modulus of native cellulose. Polym. Bull. 14, 213 (1985).
19.Kroon-Batenburg, L.M.J., Kroon, J., and Northolt, M.G.: Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibres. Polym. Commun. 27, 290 (1986).
20.Matsuo, M., Sawatari, C., Iwai, Y., and Ozaki, F.: Effect of orientation distribution and crystallinity on the measurements by x-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23, 3266 (1990).
21.Tashiro, K. and Kobayashi, M.: Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: Role of hydrogen bonds. Polymer 32, 1516 (1991).
22.Nishino, T., Takano, K., and Nakamae, K.: Elastic modulus of the crystalline regions of cellulose polymorphs. J. Polym. Sci. 33, 1647 (1995).
23.Guhados, G., Wan, W., and Hutter, J.L.: Measurement of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21, 6642 (2005).
24.Tanaka, F. and Iwata, T.: Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13, 509 (2006).
25.Cheng, Q. and Wang, S.: A method for testing the elastic modulus of single cellulose fibrils via atomic force microscopy. Composites 39, 1838 (2008).
26.Iwamoto, S., Kai, W., Isogai, A., and Iwata, T.: Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10, 2571 (2009).
27.Lahiji, R.R., Xu, X., Reifenberger, R., Raman, A., Rudie, A., and Moon, R.J.: Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26, 4480 (2010).
28.Lyons, W.J.: Theoretical value of the dynamic stretch modulus of cellulose. J. Appl. Phys. 30, 796 (1959).
29.Mann, J. and Roldan-Gonzalez, L.: X-ray measurements of the elastic modulus of cellulose crystals. Polymer 3, 549 (1962).
30.Treloar, L.R.G.: Calculation of elastic moduli of polymer crystals: III. Cell. Polym. 1, 290 (1960).
31.Pittenger, B., Erina, N., and Chanmin, S.: Quantitative mechanical mapping at nanoscale with peak force QNM, in Bruker Application Note (2009).
32.Derjaguin, B.V., Muller, V.M., and Toropov, Yu.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314 (1975).
33.Ohler, B.: Practical advice on determination of cantilever spring constants, in Bruker Application Note (2009).
34.Hertz, H.: On the contact of rigid elastic solids. J. Reine Angew. Math. 92, 156 (1882).
35.Johnson, K.L., Kendall, K., and Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. London, Ser. A 324, 301 (1971).
36.Domke, J. and Radmacher, M.: Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14, 3320 (1998).
37.Tan, S., Sherman, R.L. Jr., and Ford, W.T.: Nanoscale compression of polymer microspheres by atomic force microscopy. Langmuir 20, 7015 (2004).
38.Palaci, I., Fedrigo, S., Brune, H., Klinke, C., Chen, M., and Riedo, E.: Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 94, 175502 (2005).
39.Zhao, Y., Ge, Z., and Fang, J.: Elastic modulus of viral nanotubes. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 78, 031914 (2008).
40.Chizhik, S.A., Huang, Z., Gorbunov, V.V., Myshkin, N.K., and Tsukruk, V.V.: Micromechanical properties of elastic polymeric materials as probed by scanning force microscopy. Langmuir 14, 2606 (1998).
41.Tsukruk, V.V., Huang, A., Chizhik, S.A., and Gorbunov, V.V.: Probing of micromechanical properties of compliant polymeric materials. J. Mater. Sci. 33, 4905 (1998).
42.Feng, G., Yoon, Y., and Lee, C.J.: A study of the mechanical properties of nonowires using nanoindentation. J. Appl. Phys. 99, 074304 (2006).
43.Tranchida, D., Piccarolo, S., and Soliman, M.: Nanoscale mechanical characterization of polymers by AFM nanoindentation: Critical approach to elastic characterization. Macromolecules 39, 4547 (2006).
44.Habibi, Y., Lucia, L.A., and Rojas, O.J.: Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 110, 3479 (2010).
45.Battista, O.A., Coppick, S., Howsmon, J.A., Morehead, F.F., and Sisson, W.A.: Level-off degree of polymerization. Ind. Eng. Chem. Res. 48, 333 (1956).
46.Yachi, T., Hayashi, J., Takai, M., and Shimizu, Y.: Supermolecular structure of cellulose: Stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. J. Appl. Polym. Sci. 37, 325 (1983).
47.McNeil, L.E. and Grimsditch, M.: Elastic moduli of muscovite mica. J. Phys. Condens. Matter 5, 1681 (1993).
48.Ioelovich, M., Leykin, A., and Fogovsky, O.: Study of cellulose paracrystallinity. Bioresources 5, 1393 (2010).
49.Harris, B.: Engineering Composite Materials (IOM Communications Ltd., London, 1999).
50.Eichhorn, S.J. and Young, R.J.: The Young’s modulus of a microcrystalline cellulose. Cellulose 8, 197 (2001).
51.Atalla, R.H. and VanderHart, D.: Native cellulose: A composite of two distinct crystalline forms. Science 223, 283 (1984).
52.Roman, M. and Winter, W.T.: Cellulose nanocrystals: from discovery to application, in Proceedings of International Conference on Nanotechnology, Atlanta, Georgia, April 26-28 (2006).
53.Nishiyama, Y., Sugiyama, J., Chanzy, H., and Langan, P.: Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron x-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300 (2003).
54.Aabloo, A. and French, A.D.: Preliminary potential energy calculations of cellulose Iα crystal structure. Macromol. Theory Simul. 3, 185 (1994).
55.Nishiyama, Y., Langan, P., and Chanzy, H.: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074 (2002).
56.Finkenstadt, V.L. and Millane, R.P.: Crystal structure of Valonia cellulose Iβ. Macromolecules 31, 7776 (1998).
57.Kovalenko, V.I.: Crystalline cellulose: structure and hydrogen bonds. Russ. Chem. Rev. 79, 231 (2010).
58.Baker, A.A., Helbert, W., Sugiyama, J., and Miles, M.J.: New insight into cellulose structure by atomic force microscopy shows the Iα crystals phase at near-atomic resolution. Biophys. J. 79, 1139 (2000).
59.Malm, E., Bulone, V., Wickholm, K., Larsson, P.T., and Iversen, T.: The surface structure of well-ordered native cellulose fibrils in contact with water. Carbohydr. Res. 345, 97 (2010).
60.Zheng, X., Cao, Y., Li, B., Feng, Z., and Wang, G.: Surface effects in various bending-based test methods for measuring the elastic properties of nanowires. Nanotechnology 21, 205702 (2010).
61.Battista, O.A.: Microcrystal Polymer Science (McGraw-Hill, New York, 1975).
62.Fleming, K., Gray, D., Prasannan, S., and Matthews, S.: Cellulose crystallites: A new and robust liquid crystalline medium for the measurement of residual dipolar couplings. J. Am. Chem. Soc. 122, 5224 (2000).
63.Habibi, Y., Goffin, A.L., Schiltz, N., Duquesne, E., Dubois, P., and Dufresne, A.: Bionanocomposites based on poly(E-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J. Mater. Chem. 18, 5002 (2008).
64.Tan, E.P.S. and Lim, C.T.: Physical properties of single polymeric nanofibers. Appl. Phys. Lett. 84, 1603 (2004).
65.Shin, M.K., Kim, S.I., and Kim, S.J.: Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl. Phys. Lett. 89, 231929 (2006).
66.Curgul, S., VanVliet, K.J., and Rutledge, G.C.: Molecular dynamics simulation of size dependent structural and thermal properties of polymer nanofibers. Macromolecules 40, 8483 (2007).
67.Sun, L., Han, R.P.S., Wang, J., and Lim, C.T.: Modeling the size-dependent elastic properties of polymeric nanofibers. Nanotechnology 19, 455906 (2008).
68.Khatiwala, C.B., Peyton, S.R., and Putnam, A.J.: Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. 290, 1640 (2006).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed