Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T12:06:05.430Z Has data issue: false hasContentIssue false

Site preference determination in intermetallic compounds by thermal conductivity measurement

Published online by Cambridge University Press:  31 January 2011

Yoshihiro Terada
Affiliation:
Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060–8628, Japan
Kenji Ohkubo
Affiliation:
Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060–8628, Japan
Tetsuo Mohri
Affiliation:
Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060–8628, Japan
Tomoo Suzuki
Affiliation:
Kochi University of Technology, Tosayamada, Kochi 782–0003, Japan
Get access

Abstract

A method for the determination of site preference of substitutional elements in intermetallic compounds is proposed. It is demonstrated in Ni3Al–X alloys that the ridge direction in thermal conductivity contours in the ternary γ′ phase agrees with that of the solubility lobe of the γ′ phase in ternary phase diagrams. The ridge direction is a reliable indication of site preference of substitutional elements in intermetallic compounds. The present method is conveniently applied to a normal polycrystalline specimen with small size, and therefore, a versatile class of brittle compounds can be studied.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Thornton, P.H., Davies, R.G., and Johnston, T.L., Metall. Trans. 1, 207 (1970).CrossRefGoogle Scholar
2Pope, D.P. and Ezz, S.S., Int. Met. Rev. 29, 136 (1984).CrossRefGoogle Scholar
3Mishima, Y., Ochiai, S., Yodogawa, M., and Suzuki, T., Trans. JIM 27, 41 (1986).CrossRefGoogle Scholar
4Ochiai, S., Mishima, Y., Yodogawa, M., and Suzuki, T., Trans. JIM 27, 32 (1986).CrossRefGoogle Scholar
5Heredia, F. and Pope, D.P., in High-Temperature Ordered Interme-tallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 213.Google Scholar
6Miracle, D.B., Acta Metall. Mater. 41, 649 (1993).CrossRefGoogle Scholar
7Noebe, R.D., Bowman, R.R., and Nathal, M.V., Int. Mater. Rev. 38, 193 (1993).CrossRefGoogle Scholar
8Schneibel, J.H., George, E.P., Specht, E.D., and Horton, J.A., in High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J., Hanada, S., Baker, J., Noebe, R.D., and Schwartz, D. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 73.Google Scholar
9Rawlings, R.D. and Staton-Bevan, A.E., J. Mater. Sci. 10, 505 (1975).CrossRefGoogle Scholar
10Aoki, K. and Izumi, O., Phys. Status Solidi A 38, 587 (1976).CrossRefGoogle Scholar
11Sauthoff, G., in High Temperature Aluminides and Intermetallics, edited by Whang, S.H., Liu, C.T., Pope, D.P., and Stiegler, J.O. (TMS, Warrendale, PA, 1990), p. 329.Google Scholar
12Cotton, J.D., Noebe, R.D., and Kaufman, M.J., Intermetallics 1, 3 (1993).CrossRefGoogle Scholar
13Pike, L.M., Chang, Y.A., and Liu, C.T., Intermetallics 5, 601 (1997).CrossRefGoogle Scholar
14Guard, R.W. and Westbrook, J.H., Trans. Metall. Soc. AIME 215, 807 (1959).Google Scholar
15Ochiai, S., Oya, Y., and Suzuki, T., Acta Metall. 32, 289 (1984).CrossRefGoogle Scholar
16Ueyama, T., Yamauchi, A., Takeyama, M., and Matsuo, T., Rep. 123rd Comm. Heat-Resisting Mater. Alloys 40, 313 (1999).Google Scholar
17Binary Alloy Phase Diagrams, 2nd ed., edited by Massalski, T.B. (ASM International, Materials Park, OH, 1990).Google Scholar
18Drijver, J.W. and van, F. der Woude, J. Phys. F: Met. Phys. 3, L206 (1973).CrossRefGoogle Scholar
19Nicholls, J.R. and Rawlings, R.D., Acta Metall. 25, 187 (1977).CrossRefGoogle Scholar
20Bohn, H.G., Schumacher, R., and Vianden, R.J., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 123.Google Scholar
21Brenner, S.S., Sieloff, D., and Burke, M.G., J. Phys., Colloq. 47(C2), 215 (1986).CrossRefGoogle Scholar
22Miller, M.K. and Horton, J.A., Scr. Metall. 20, 1125 (1986).CrossRefGoogle Scholar
23Miller, M.K. and Bentley, J., J. Phys., Colloq. 47, 463 (1986).Google Scholar
24Miller, M.K. and Horton, J.A., in High-Temperature Ordered In-termetallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 117.Google Scholar
25Almazouzi, A., Numakura, H., Koiwa, M., Hono, K., and Sakurai, T., Intermetallics 5, 37 (1997).CrossRefGoogle Scholar
26Shindo, D., Kikuchi, M., Hirabayashi, M., Hanada, S., and Izumi, O., Trans. JIM 29, 956 (1988).CrossRefGoogle Scholar
27Chiba, A., Shindo, D., and Hanada, S., Acta Metall. Mater. 39, 13 (1991).CrossRefGoogle Scholar
28Munroe, P.R. and Baker, I., J. Mater. Res. 6, 943 (1991).CrossRefGoogle Scholar
29Bohn, H.G., Williams, J.M., Barrett, J.H., and Liu, C.T., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O.(Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 127.Google Scholar
30Lin, H., Seiberling, L.E., Lyman, P.F., and Pope, D.P., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O.(Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 165.Google Scholar
31Karg, A.V., Fornwalt, D.E., and Kriege, O.H., J. Inst. Met. 99, 301 (1971).Google Scholar
32Masahashi, N., Takasugi, T., and Izumi, O., Acta Metall. 36, 1815 (1988).CrossRefGoogle Scholar
33Lin, H. and Pope, D.P., J. Mater. Res. 5, 763 (1990).CrossRefGoogle Scholar
34Marty, A., Bessiere, M., Bley, F., Calvayrac, Y., and Lefebvre, S., Acta Metall. Mater. 38, 345 (1990).CrossRefGoogle Scholar
35Lawniczak-Jablonska, K., Pascarelli, S., Boscherini, F., and Kozubski, R., Acta Phys. Pol., A 82, 315 (1992).CrossRefGoogle Scholar
36Pascarelli, S., Boscherini, F., Mobilio, S., Lawniczak-Jablonska, K., and Kozubski, R., Phys. Rev. B 49, 14984 (1994).CrossRefGoogle Scholar
37Terada, Y., Ohkubo, K., Nakagawa, K., Mohri, T., and Suzuki, T., Intermetallics 3, 347 (1995).CrossRefGoogle Scholar
38Hanai, S., Terada, Y., Ohkubo, K., Mohri, T., and Suzuki, T., Intermetallics 4, S41 (1996).CrossRefGoogle Scholar
39Terada, Y., Ohkubo, K., Mohri, T., and Suzuki, T., Mater. Sci. Eng. A239–240, 907 (1997).CrossRefGoogle Scholar
40Terada, Y., Mohri, T., and Suzuki, T., in High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J., Hanada, S., Baker, I., Noebe, R.D., and Schwartz, D.(Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 201.Google Scholar
41Suzuki, T., Terada, Y., and Mohri, T., in Nickel and Iron Alumi-nides: Processing, Properties and Applications, edited by Deevi, S.C., Maziasz, P.J., Sikka, V.K., and Cahn, R.W. (ASM International, Materials Park, OH, 1997), p. 223.Google Scholar
42Terada, Y., Ohkubo, K., Mohri, T., and Suzuki, T., Intermetallics 7, 717 (1999).CrossRefGoogle Scholar
43Terada, Y., Ohkubo, K., Mohri, T., and Suzuki, T., Intermetallics 8, 447 (2000).CrossRefGoogle Scholar
44Ohkubo, K., Terada, Y., Takizawa, S., Mohri, T., and Suzuki, T., J. Jpn. Inst. Met. 60, 695 (1996).CrossRefGoogle Scholar
45Ternary Alloys, edited by Petzow, G. and Effenberg, G.(VCH, Weinheim, Germany, 1988).Google Scholar
46Handbook of Ternary Alloy Phase Diagrams, edited by Villars, P., Prince, A., and Okamoto, H. (ASM International, Materials Park, OH, 1995).Google Scholar
47Paker, W.J., Jenkins, R.J., Butler, C.P., and Abbott, G.L., J. Appl. Phys. 32, 1679 (1961).CrossRefGoogle Scholar
48Cape, J.A. and Lehman, G.W., J. Appl. Phys. 34, 1909 (1963).CrossRefGoogle Scholar
49Taylor, R.E., and Cape, J.A., Appl. Phys. Lett. 5, 212 (1964).CrossRefGoogle Scholar
50Ohkubo, K., Terada, Y., Mohri, T., and Suzuki, T., ULVAC Tech. J. 47, 20 (1997).Google Scholar
51A Handbook of Lattice Spacing and Structures of Metals and Alloys, edited by Pearson, W.B. (Pergamon, London, United Kingdom, 1967), Vol. 2.Google Scholar
52Ochiai, S., Mishima, Y., and Suzuki, T., Bull. P.M.E. (T.I.T.) 53, 15 (1984).Google Scholar
53Villars, P. and Calvert, L.D., Pearson’s Handbook of Crystallo-graphic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985), Vols. 1–3.Google Scholar
54Williams, R.K., Graves, R.S., Weaver, F.J., and McElroy, D.L., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C.C., Liu, C.T., and Stoloff, N.S.. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 505.Google Scholar
55Williams, R.K., Graves, R.S., and Weaver, F.J., J. Appl. Phys. 61, 1486 (1987).CrossRefGoogle Scholar
56Anton, D.L., in Intermetallic Compounds: Vol. 2, Practice, edited by Westbrook, J.H. and Fleischer, R.L. (Wiley, New York, 1994), p. 3.Google Scholar
57Liu, C.T. and Pope, D.P., in Intermetallic Compounds: Vol. 2, Practice, edited by Westbrook, J.H. and Fleischer, R.L. (Wiley, New York, 1994), p. 17.Google Scholar
58Bradley, A.J., J. Iron Steel Inst. 163, 19 (1949).Google Scholar
59Bradley, A.J., J. Iron Steel Inst. 168, 233 (1951).Google Scholar
60Bradley, A.J., J. Iron Steel Inst. 171, 41 (1952).Google Scholar
61Schramm, J., Z. Metallkde. 33, 403 (1941).Google Scholar
62Alexander, W.O., J. Inst. Met. 63, 163 (1938).Google Scholar
63Wee, D.M. and Suzuki, T., Trans. JIM 20, 634 (1979).CrossRefGoogle Scholar