Skip to main content Accessibility help

Single-crystalline Tungsten Nanoparticles Produced by Thermal Decomposition of Tungsten Hexacarbonyl

  • Martin H. Magnusson (a1), Knut Deppert (a1) and Jan-Olle Malm (a2)


Nanometer-sized particles of W are of interest in semiconductor device research, where such particles may store electrons inside heteroepitaxially defined structures. In this paper, we present results concerning W particles produced by thermal decomposition of tungsten hexacarbonyl. By the described method, it was possible to produce size-selected, single-crystalline W particles in the size range between 15 and 60 nm. The sintering behavior of the particles was studied between ambient temperatures and 1900 °C. The particle morphology and structure were examined with high-resolution transmission electron microscopy and electron diffraction techniques. Particles sintered at the highest temperatures typically were single crystals, with well-developed facets. Some problems concerning a yield reducing charging mechanism are discussed.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Wernersson, L.E., Litwin, A., Samuelson, L., and Seifert, W., Jpn. J. Appl. Phys. 36, L1628 (1997).
2.Kawakami, Y., Seto, T., and Ozawa, E., J. Jpn. Inst. Metals 63, 1101 (1999).
3.Patokin, A.P. and Sagalovich, V.V., Russ. J. Phys. Chem. 50, 370 (1976).
4.Vogt, G.J., J. Vac. Sci. Technol. 20, 1336 (1982).
5.Diem, M., Fisk, M., and Goldman, J., Thin Solid Films 107, 39 (1983).
6.Haigh, J., Burkhardt, G., and Blake, K., J. Cryst. Growth 155, 3 (1995).
7.Haigh, J., Chemtronics 1, 134 (1986).
8.Nambu, Y., Morishige, Y., and Kishida, S., Appl. Phys. Lett. 56, 2581 (1990).
9.Okuyama, F., J. Cryst. Growth 49, 531 (1980).
10.Hoyle, P.C., Ogasawara, M., Cleaver, J.R.A, and Ahmed, H., Appl. Phys. Lett. 62, 3043 (1993).
11.Vollath, D. and Szabo, D.V., Mater. Lett. 35, 3 (1998).
12.Knutson, E.O. and Whitby, K.T., J. Aerosol Sci. 6, 443 (1975).
13.Winklmayer, W., Reischl, G.P., Lindner, A.O., and Berner, A., J. Aerosol Sci. 22, 289 (1991).
14.Burtscher, H., Scherrer, L., Siegmann, H.C., Schmidt-Ott, A., and Federer, B., J. Appl. Phys. 53, 3787 (1982).
15.Deppert, K., Schmidt, F., Krinke, T., Dixkens, J., and Fissan, H., J. Aerosol Sci. 27, S151 (1996).
16.Grau, G.G., in Mechanischthermische Konstanten für das Gleichgewicht heterogener Systeme, Landolt-Börnstein, edited by Schäfer, K. and Lax, E. (Springer, Berlin, 1960), Vol. II/2a, p. 45.
17.CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1997), p. 4124.
18.Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (Wiley, New York, 1982), p. 424.
19.Schmidt-Ott, A., J. Aerosol Sci. 19, 553 (1987).
20.Shimada, M., Seto, T., and Okuyama, K., J. Chem. Eng. Jpn. 27, 795 (1994).
21.Magnusson, M.H., Deppert, K., Malm, J-O., Bovin, J-O., and Samuelson, L., J. Nanoparticle Res. 1, 243 (1999).
22.Basavaiah, S. and Pollock, S.R., J. Appl. Phys. 39, 5548 (1968).
23.Schmidt-Ott, A. (personal communication).
24.Ahonen, P. and Kauppinen, E. (personal communication).


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed