Skip to main content Accessibility help
×
Home

Silver nanoparticles stabilized by bundled tungsten oxide nanowires with catalytic and antibacterial activities

  • Ziwei Wu (a1), Xiaomeng Lü (a1), Xiaojun Wei (a1), Jiayu Shen (a1) and Jimin Xie (a1)...

Abstract

An in situ redox reaction was developed to synthesize bundled tungsten oxide (WO3@W18O49) ultrafine nanowires (BUNs) loaded with Ag nanoparticles using weakly reductive W18O49 and oxidative silver nitrate as precursor. However, due to the weak activation between the two reactants, redox just happened on the surface of W18O49, resulting in the formation of W18O49 coated with WO3 (here, we refer this structure to WO x simply), and the bulk phase of the composites retained the same pattern. Ag nanoparticles (<5 nm) with a narrow size distribution were obtained and immobilized onto WO x BUNs without any aggregation. The paper presented a systematic investigation on the Ag-WO x nanocomposite used as a catalyst for the reduction of p-nitrophenol and as an antibacterial agent against Escherichia coli. The remarkably enhanced performance may be ascribed to the moderate interaction of the small Ag-NPs and WO x BUNs with high specific surface area.

Copyright

Corresponding author

a) Address all correspondence to these authors. e-mail: laiyangmeng@hotmail.com
b) e-mail: xiejm391@163.com

References

Hide All
1. Aiken, J.D. and Finke, R.G.: A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A: Chem. 145, 1 (1999).
2. Toshima, N.: Nanoscale Materials (Kluwer Academic Publishers, New York, 2003).
3. Signori, A.M., Santos, K.d.O., Eising, R., Albuquerque, B.L., Giacomelli, F.C., and Domingos, J.B.: Formation of catalytic silver nanoparticles supported on branched polyethyleneimine derivatives. Langmuir 26(22), 17772 (2010).
4. Yu, C-L., Yang, K., Xie, Y., Fan, Q-Z., Yu, J-M., Shu, Q., and Wang, C-Y.: Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale 5, 2142 (2013).
5. Renato, E., Aline, M.S., Sébastien, F., and Domingos, J.B.: Development of catalytically active silver colloid nanoparticles stabilized by dextran. Langmuir 27(19), 11860 (2011).
6. Jana, D., Dandapat, A., and De, G.: Anisotropic gold nanoparticle doped mesoporous boehmite films and their use as reusable catalysts in electron transfer reactions. Langmuir 26(14), 12177 (2010).
7. Santos, K.d.O., Elias, W.C., Signori, A.M., Giacomelli, F.C., Yang, H., and Domingos, J.B.: Synthesis and catalytic properties of silver nanoparticle-linear polyethylene imine colloidal systems. J. Phys. Chem. C 116(7), 4594 (2012).
8. Deb, S.K.: Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cells 92, 245 (2008).
9. Shibuya, M. and Miyauchi, M.: Site-selective deposition of metal nanoparticles on aligned WO3 nanotrees for super-hydrophilic thin films. Adv. Mater. 21, 1373 (2009).
10. Zhu, L-F., She, J-V., Luo, J-Y., Deng, S-Z., Chen, J., Ji, X-W., and Xu, N.S.: Self-heated hydrogen gas sensors based on Pt-coated W18O49 nanowire networks with high sensitivity, good selectivity and low power consumption. Sens. Actuators, B 153, 354 (2011).
11. Saha, M.S., Banis, M.N., Zhang, Y., Li, R-Y., Sun, X-L., Cai, M., and Wagner, F.T.: Tungsten oxide nanowires grown on carbon paper as Pt electrocatalyst support for high performance proton exchange membrane fuel cells. J. Power Sources 192, 330 (2009).
12. Zhang, H-Y., Huang, C-L., and Tao, R-T.: One-pot solvothermal method to synthesize platinum/W18O49 ultrafine nanowires and their catalytic performance. J. Mater. Chem. 22(8), 3354 (2012).
13. Pradhan, N., Pal, A., and Pal, T.: Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf., A 196, 247 (2002).
14. Xi, G-C., Ouyang, S-X., and Li, P.: Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem. Int. Ed. 51(10), 2395 (2012).
15. Xie, Y., Ding, K-L., Liu, Z-M., Tao, R-T., Sun, Z-Y., Zhang, H-Y., and An, G-M.: In situ controllable loading of ultrafine noble metal particles on Titania. J. Am. Chem. Soc. 131(19), 6648 (2009).
16. Xi, G-C., Ye, J-H., Ma, Q., Su, N., Bai, H., and Wang, C.: In situ growth of metal particles on 3D urchin-like WO3 nanostructures. J. Am. Chem. Soc. 134(15), 6508 (2012).
17. Lin, F-H. and Doong, R.A.: Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 115(14), 6591 (2011).
18. Jiang, Z-F., Xie, J-M., and Jiang, D-L.: Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. CrystEngComm 15(3), 560 (2013).
19. Jiang, Z-F., Xie, J-M., and Jiang, D-L.: Facile route fabrication of nano-Ni core mesoporous-silica shell particles with high catalytic activity towards 4-nitrophenol reduction. CrystEngComm 14(14), 4601 (2012).
20. Zhao, Y., Wang, Z-Q., Zhao, X., Li, W., and Liu, S-X.: Antibacterial action of silver-doped activated carbon prepared by vacuum impregnation. Appl. Surf. Sci. 266, 67 (2013).
21. Chang, X-T., Sun, S-B., and Dong, L-H.: Efficient synthesis of Ag/AgCl/W18O49 nanorods and their antibacterial activities. Mater. Lett. 83, 133 (2012).
22. Deng, Z-W., Zhu, H-B., Peng, B., Chen, H., Sun, Y-F., Gang, X-D., Jin, P-J., and Wang, J-L.: Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl. Mater. Interfaces 4(10), 5625 (2012).
23. Li, W-R., Xie, X-B., Shi, Q-S., Zeng, H-Y., Ouyang, Y-S., and Chen, Y-B.: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85, 1115 (2010).
24. Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun, H., Tam, P.K., Chiu, J.F., and Chen, C.M.: Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteomics Res. 5, 916 (2006).
25. Rai, M., Yadav, A., and Grade, A.: Silver nanoparticles as a new generation of microbials. Biotechnol. Adv. 27, 76 (2009).

Silver nanoparticles stabilized by bundled tungsten oxide nanowires with catalytic and antibacterial activities

  • Ziwei Wu (a1), Xiaomeng Lü (a1), Xiaojun Wei (a1), Jiayu Shen (a1) and Jimin Xie (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed