Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-21T21:54:05.239Z Has data issue: false hasContentIssue false

Silicon carbide ceramics prepared by pulse electric current sintering of β–SiC and α–SiC powders with oxide and nonoxide additives

Published online by Cambridge University Press:  31 January 2011

You Zhou
Affiliation:
National Industrial Research Institute of Nagoya, Nagoya 462-8510, Japan
Kiyoshi Hirao
Affiliation:
National Industrial Research Institute of Nagoya, Nagoya 462-8510, Japan
Motohiro Toriyama
Affiliation:
National Industrial Research Institute of Nagoya, Nagoya 462-8510, Japan
Hidehiko Tanaka
Affiliation:
National Institute for Research in Inorganic Materials, Tsukuba, Ibaraki 305-0044, Japan
Get access

Abstract

Using a pulse electric current sintering (PECS) method, β–SiC and α–SiC powders doped with a few weight percent of Al2O3–Y2O3 oxide or Al4C3–B4C–C nonoxide additives were rapidly densified to high densities (95.2–99.7%) within less than 30 min of total processing time. When Al2O3–Y2O3 additive was used, both ceramics resulting from β–SiC and α–SiC had fine, equiaxed microstructures. In contrast, when Al4C3–B4C–C additive was used, the ceramic resulting from α–SiC had a coarse, equiaxed microstructure, whereas the ceramic resulting from β–SiC was composed of large elongated grains whose formation was accompanied by the β →?α phase transformation of SiC. Compared with the Al2O3–Y2O3-doped SiC ceramics, the Al4C3–B4C–C-doped SiC ceramics had higher densities, lower fracture toughness, and higher hardness. The fracture mode of the oxide-doped SiC was mainly intergranular, whereas the nonoxide-doped SiC exhibited almost complete intragranular fracture that was attributed to the higher interfacial bonding strength.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Prochazka, S., in Special Ceramics 6, edited by Popper, P. (British Ceramic Research Association, Stoke on Trent, 1975), p. 171.Google Scholar
2.Omori, M. and Takei, H., J. Am. Ceram. Soc. 65, c92 (1982).CrossRefGoogle Scholar
3.Mulla, M.A. and Krstic, V.D., Am. Ceram. Soc. Bull. 70, 439 (1991).Google Scholar
4.Sigl, L.S. and Kleebe, H.J., J. Am. Ceram. Soc. 76, 773 (1993).CrossRefGoogle Scholar
5.Padture, N.P., J. Am. Ceram. Soc. 77, 519 (1994).CrossRefGoogle Scholar
6.Padture, N.P. and Lawn, B.R., J. Am. Ceram. Soc. 77, 2518 (1994).CrossRefGoogle Scholar
7.Kim, Y.W., Mitomo, M., Emoto, H., and Lee, J.G., J. Am. Ceram. Soc. 81, 3136 (1998).CrossRefGoogle Scholar
8.Cao, J.J., MoberlyChan, W.J., De Jonghe, L.C., Gilbert, C.J., and Ritchie, R.O., J. Am. Ceram. Soc. 79, 461 (1996).CrossRefGoogle Scholar
9.Zhou, Y., Tanaka, H., Otani, S., and Bando, Y., J. Am. Ceram. Soc. (in press).Google Scholar
10.Shinozaki, S., Williams, R.M., Juterbock, B.N., Donlon, W.T., Hangas, J., and Peters, C.R., Am. Ceram. Soc. Bull. 64, 1389 (1985).Google Scholar
11.Tanaka, H. and Zhou, Y., J. Mater. Res. 14, 518 (1999).CrossRefGoogle Scholar
12.Inomata, Y., Tanaka, H., Inoue, Z., and Kawabata, H., J. Ceram. Soc. Jpn. 88, 353 (1980).Google Scholar
13.Murayama, N., Bull. Ceram. Soc. Jpn. 32, 445 (1997).Google Scholar
14.Yoshimura, M., Ohji, T., Sando, M., and Niihara, K., J. Mater. Sci. Lett. 17, 1389 (1998).CrossRefGoogle Scholar
15.Hannink, R.H.J, Bando, Y., Tanaka, H., and Inomata, Y., J. Mater. Sci. 23, 2093 (1988).CrossRefGoogle Scholar
16.Lee, S.K. and Kim, C.H., J. Am. Ceram. Soc. 77, 1655 (1994).CrossRefGoogle Scholar
17.Tanaka, H. and Iyi, N., J. Ceram. Soc. Jpn. (Intl. Edition). 10, 1313 (1993).CrossRefGoogle Scholar
18. Japanese Industrial Standards Committee, JIS R 1607–1900 (Japanese Standard Association, Tokyo, Japan, 1990).Google Scholar
19.Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
20.Risbud, S.H., Shan, C.H., Mukherjee, A.K., Kim, M.J., Bow, J.S., and Holl, R.A., J. Mater. Res. 10, 237 (1995).CrossRefGoogle Scholar
21.Tokita, M., New Ceram. 10, 43 (1997).Google Scholar
22.Akashi, K., J. Ceram. Soc. Jpn. 95, 11 (1987).Google Scholar
23.Rice, R.W., Freiman, S.W., and Becher, P.F., J. Am. Ceram. Soc. 64, 345 (1981).CrossRefGoogle Scholar
24.Faber, K.T. and Evans, A.G., Acta Metall. 31, 565 (1983).CrossRefGoogle Scholar
25.Becher, P.F., Sun, E.Y., Hsueh, C.H., Alexander, K.B., Hwang, S.L., Waters, S.B., and Westmoreland, C.G., Acta Mater. 44, 3881 (1996).CrossRefGoogle Scholar
26.Becher, P.F., Sun, E.Y., Plucknett, K.P., Alexander, K.B., Hsueh, C.H., Lin, H.T., Waters, S.B., Westmoreland, C.G., Kang, E.S., Hirao, K., and Brito, M.E., J. Am. Ceram. Soc. 81, 2821 (1998).CrossRefGoogle Scholar
27.Sun, E.Y., Becher, P.F., Plucknett, K.P., Hsueh, C.H., Alexander, K.B., Waters, S.B., Hirao, K., and Brito, M.E., J. Am. Ceram. Soc. 81, 2831 (1998).CrossRefGoogle Scholar