Skip to main content Accessibility help
×
Home

Shock-induced reaction synthesis (SRS) of nickel aluminides

  • N.N. Thadhani (a1), S. Work (a1), R.A. Graham (a2) and W.F. Hammetter (a2)

Abstract

Shock-induced chemical reactions between nickel and aluminum powders (mixed in Ni3Al stoichiometry) are used for the synthesis of nickel aluminides. It is shown that the extent of shock-induced chemical reactions and the nature of the shock-synthesized products are influenced by the morphology of the starting powders. Irregular (flaky type) and fine morphologies of the powders undergo complete reactions in contrast to partial reactions occurring in coarse and uniform morphology powders under identical shock loading conditions. Furthermore, irregular morphology powders result in the formation of the equiatomic (B2 phase) NiAl compound while the Ni3Al (L12 phase) compound is the reaction product with coarse and regular morphology powders. Shock-induced reaction synthesis can be characterized as a bulk reaction process involving an intense “mechanochemical” mechanism. It is a process in which shock compression induces fluid-like plastic flow and mixing, and enhances the reactivity due to the introduction of defects and cleansing of particle surfaces, which strongly influence the synthesis process.

Copyright

References

Hide All
1.Intermetallic Compounds, edited by Westbrook, J. H. (John Wiley, New York, 1967).
2.Pope, D. P., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 310.
3.Vedula, K. and Stephens, J. R., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), pp. 381390.
4.Stoloff, N. S., Inter. Mater. Rev. 34 (4), 153 (1989).
5.Fleischer, R. L., Dimiduk, D. M., and Lipsitt, H. A., Annu. Rev. Mater. Sci. 19, 231 (1989).
6.Cahn, R. W., MRS Bulletin XVI, 1823 (1991).
7.Massalski, T. B., Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1987).
8.Robinson, P. M. and Bewer, M. B., in Mechanical Properties of Intermetallic Compounds, edited by Westbrook, J. H. (John Wiley, New York, 1967), p. 38.
9.Enomi, K. and Nenno, S., Metall. Trans. 2, 1487 (1971).
10.Au, Y. K. and Wayman, C. M., Scripta Metall. 6, 1209 (1972).
11.Graham, R. A., Morosin, B., Venturini, E. L., and Carr, M. J., Annu. Rev. Mater. Sci. 16, 315 (1986).
12.Dremin, A. N. and Bruesov, O. N., Russ. Chem. Rev. 37 (5), 392 (1968).
13.Thadhani, N. N., Adv. Mater. Manuf. Proc. 3 (4), 493 (1988).
14.Sawaoka, A., in Sci. Am. (Jap. ed.) 11, 25 (1984). (in Japanese)
15.Chao, E. C. T., Science 156, 192 (1967).
16.DeCarli, P. S. and Jamieson, J. C., Science 133, 821 (1961).
17.Milton, D. J. and DeCarli, P. S., Science 140, 670 (1963).
18.Graham, R. A., Morosin, B., and Dodson, B., The Chemistry of Shock Compression: A Bibliography, Sandia National Laboratories Report No. SAND83–1887 (1983).
19.Shock Compression Chemistry in Materials Synthesis and Processing,” National Materials Advisory Board, NMAB-414, National Academy Press, Washington, DC (1984).
20.Graham, R. A., Morosin, B., Horie, Y., Venturini, E. L., Boslough, M., Carr, M., and Williamson, D. L., in Shock Waves in Condensed Matter, edited by Gupta, Y. M. (Plenum Press, New York, 1986), pp. 693 and 749.
21.Graham, R. A., in Shock Waves in Condensed Matter–1987, edited by Schmidt, S. C. and Holmes, N. C. (North Holland, 1988), p. 11.
22.Horie, Y., Graham, R. A., and Simonsen, I. K., Mater. Lett. 3 (9,10), 354 (1985).
23.Horie, Y., Graham, R. A., and Simonsen, I. K., in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, edited by Murr, L. E., Staudhammer, K. P., and Meyers, M. A. (Marcel Dekker, Inc., New York, 1986), p. 1023.
24.Benjamin, J. S., Metall. Trans. 1, 2943 (1970).
25.Benjamin, J. S., Sci. Am. 234, 40 (1976).
26.Sundaresan, R. and Froes, F. H., J. Metals 8, 22 (1987).
27.Schwarz, R. B. and Nash, P., J. Metals 1, 27 (1989).
28.Nash, P., Higgins, G. T., Dillinger, N., Huang, S. J., and Kim, H., Advances in Powder Metallurgy–1989 (MPIF, Princeton, 1989), Vol. 2, p. 473.
29.Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).
30.Proc. of Solid State Amorphization Transformations, edited by Schwarz, R. B. and Johnson, W. L. (Elsevier Publications, Lausanne, 1988).
31.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).
32.Merzhanov, A. G., Archiv. Combustion 1, 23 (1981).
33.Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277365 (1989).
34.Borovinskaya, I. P., Vishniakov, G. A., Maslov, V. M., and Merzhanov, A. G., in Combustion Processes in Chemical Technology and Metallurgy (Moscow, 1975), p. 141.
35.Bose, A., Rabin, B. H., and German, R. M., Powder Met. Inter. 20 (3), 2530 (1988).
36.Bose, A., Moore, B., German, R. M., and Stoloff, N. S., J. Metals 40 (9), 1417 (1988).
37.Philpot, K. A., Munir, Z. A., and Holt, J. B., J. Mater. Sci. 22, 159 (1987).
38.Naiborodenko, Y. S., Itin, V. I., and Savitskii, K. V., Sov. Phys. J. 11, 19 and 89 (1968).
39.Holt, J. B. and Munir, Z., J. Mater. Sci. 21, 251 (1986).
40.Sims, D. M., Bose, A., and German, R. M., Prog. Powder Met. 43, 575 (1987).
41.Atzmon, M. J., “Formation of Nickel Aiuminides by Mechanical Alloying”, in Proc. of TMS Symposium on Solid State Powder Processing, Indianapolis, IN, October 1–5, 1989, edited by Clauer, A. H. and deBarbadillo, J. J. (TMS, 1989), pp. 173180.
42.Ivanov, E., Grigorieva, T., Boldyrev, G. V., Fasman, A. B., Mikhailenko, S. D., and Kalinina, O. T., Mater. Lett. 7, 51 (1988).
43.Batsanov, S. S., Doronin, G. S., Klochkov, S. V., and Teut, A. I., Combustion, Explosion and Shock Waves 22, 765 (1986).
44.Graham, R. A. and Webb, D. M., in Shock Waves in Condensed Matter–1985, edited by Gupta, Y. M. (Plenum Press, New York, 1986), p. 831.
45.Thadhani, N. N., Mutz, A. H., Kasiraj, P., and Vreeland, T. Jr, in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, edited by Murr, L. E., Staudhammer, K. P., and Meyers, M. A. (Marcel Dekker, Inc., New York, 1023, 1986), p. 247.
46.Thadhani, N. N., Vreeland, T., Jr., and Ahrens, T. J., J. Mater. Sci. 22, 4446 (1987).
47.Simonsen, I. K., Horie, Y., Graham, R. A., and Carr, M. J., Mater. Lett. 5, 75 (1987).
48.Hammetter, W. F., Graham, R. A., Morosin, B., and Horie, Y., in Shock Waves in Condensed Matter, edited by Schmidt, S. C. and Holmes, N. C. (North-Holland, 1987), p. 431.
49.Song, I. and Thadhani, N. N., Metall. Trans. A 23A, 4148 (1992).
50.Graham, R. A., in Proc. of 3rd Int. Symp. on High Dynamic Pressures, LaGrande Motte, France, June 5–9, 175 (1989).

Shock-induced reaction synthesis (SRS) of nickel aluminides

  • N.N. Thadhani (a1), S. Work (a1), R.A. Graham (a2) and W.F. Hammetter (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed