Skip to main content Accessibility help

Shock synthesis of nanocrystalline Si by thermal spraying

  • R. Goswami (a1), S. Sampath (a1), H. Herman (a1) and J. B. Parise (a2)


Shock synthesis of nanocrystalline Si was accomplished for the first time using thermal spray in which Si powder is injected into a high-energy flame where the particles melt and accelerate to impact on the substrate. A stream of molten Si particles impacted onto Si wafers of two orientations (100) and (111). The shock wave generated by the sudden impact of the droplets propagated through the underlying Si layer, which experienced a phase transition to a high-pressure form of Si due to propagation of the shock wave. The metastable high-pressure form of Si then transformed to metastable Si-IX, Si-IV (hexagonal diamond-Si), R-8, and BC-8 phases as evidenced by transmission electron microscopy and x-ray diffraction studies. Back-transformed metastable Si grains, with a size range from 2 to 5 nm, were found to be dispersed within Si-I (cubic diamond-Si). The metastable phases formed mostly in deposits on the (100) substrate compared to those of the (111) substrate orientations. This behavior can be correlated with the anisotropic nature of the pressure-induced transformations of Si-I.



Hide All
1.Duclos, S.J., Vohra, Y.K., and Ruoff, A.L., Phys. Rev. Lett. 58, 775 (1987).
2.Wentorf, R.M. Jr and Kasper, J.S., Science 139, 338 (1963).
3.Besson, J.M., Mokhtari, F.H., Gonzalez, J., and Weill, G., Phys. Rev. Lett. 59, 473 (1987).
4.Crain, J., Ackland, G.J., Maclean, J.R., Piltz, R.O., Hatton, P.D., and Pawley, G.S., Phys. Rev. B 50, 13043 (1994a).
5.Zhao, Y-X., Buehler, F., Sites, J.R., and Spain, I.L., Solid State Comm. 59, 679 (1986).
6.Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).
7.Hirsman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, M., Nature 384, 338 (1996).
8.Herman, H. and Sampath, S., in Metallurgical and Ceramic Protective Coatings, edited by Stern, K.H. (Chapman and Hall, London, 1996), p. 261.
9.Mailhot, K., Gitzhofer, F., and Boulos, M.I., in Proc. 15th International Thermal Spray Conf., Nice, France (1998), p. 1419
10.Mailhot, K., Gitzhofer, F., and Boulos, M.I. (private communication).
11.Neiser, R.A., Dykhuizen, R.C., Smith, M.F., and Hollis, K.J., in Proc. National Thermal Spray Conf., Anaheim, CA (ASM, Metals Park, OH, 1993), p. 61.
12.Kowanlsky, K.A., Marantz, D.R., Smith, M.F., and Oberkampf, W.L., in Proc. 3rd National Thermal Spray Conf., Long Beach, CA (ASM, Metals Park, OH, 1990), p. 587.
13.Cullity, B.D., in Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978).
14.Pirovz, P., Chaim, R., Dahmen, U., and Westmacott, K.H., Acta Metall. Mater. 38, 313 (1990).
15.Stiffler, S.R., Thompson, M.O., and Peercy, P.S., Phys. Rev. Lett. 60, 2519 (1988).
16.Zel'dovich, Y.B. and Raizer, Yu.P., in Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic Press, NY, 1967).
17.Nellis, W.J., Scripta Metall. 22, 121 (1988).
18.Houben, J.M., in Proc. 2nd National Thermal Spray Conf., Long Beach, CA (ASM, Metals Park, OH, 1984), p. 1.
19.Zukas, J.A., Nicholas, T., Swift, H.F., Greszczuk, L.B., and Curran, D.R., Impact Dynamics (John Wiley and Sons, NY, 1982).
20.Gust, W.H. and Royce, E.B., J. Appl. Phys. 42, 1897 (1971).


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed