Skip to main content Accessibility help

Shear strength and sliding behavior of Ni/Al2O3 interfaces: A first-principle study

  • Xiancong Guo (a1) and Fulin Shang (a1)


First-principle calculations are performed to investigate the mechanical shear strength and sliding characteristic of Ni(111)/α-Al2O3(0001) interfaces. Two types of interface models are considered, i.e., Al-terminated O-site and O-terminated Al-site models. Mechanical properties such as theoretical shear strength, unstable stacking energy, and critical displacement are examined. It is found that the shear deformation of the Ni/Al2O3 interfaces takes place by a process of successive breaking and rebonding of the Al–O bonds near the Al2 or Al3 atom inside the α-Al2O3 block accompanying the sliding of Ni atomic layer, and finally the Ni/Al2O3 interfaces fail between the Ni atomic layer. Relatively, the Al–O interface possesses a superior shear resistance than the O–Al interface. In addition, the mechanical shear strength and tensile strength are discussed, together with the potential usage of these theoretical results that could offer in fabricating actual thermal barrier coating systems and in analyzing their mechanical response.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Mumm, D.R. and Evans, A.G.: On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition. Acta Mater. 48, 1815 (2000).
2.Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., and Pettit, F.S.: Mechanisms controlling the durability of thermal-barrier coatings. Prog. Mater. Sci. 46, 505 (2001).
3.Padture, N.P., Gell, M., and Jordan, E.H.: Thermal-barrier coatings for gas-turbine engine applications. Science 296, 280 (2002).
4.Mao, W.G., Dai, C.Y., Zhou, Y.C., and Liu, Q.X.: An experimental investigation on thermo-mechanical buckling delamination failure characteristic of air plasma sprayed thermal-barrier coatings. Surf. Coat. Technol. 201, 6217 (2007).
5.Chen, X., Hutchinson, J.W., He, M.Y., and Evans, A.G.: On the propagation and coalescence of delamination cracks in compressed coatings: With application to thermal barrier systems. Acta Mater. 51, 2017 (2003).
6.Mumm, D.R., Watanabe, M., Evans, A.G., and Pfaendtner, J.A.: The influence of test method on failure mechanisms and durability of a thermal barrier system. Acta Mater. 52, 1123 (2004).
7.Evans, A.G. and Hutchinson, J.W.: The mechanics of coating delamination in thermal gradients. Surf. Coat. Technol. 201, 7905 (2007).
8.Wei, Y. and Hutchinson, J.W.: Toughness of Ni/Al2O3 interfaces as dependent on micron-scale plasticity and atomistic-scale separation. Philos. Mag. 88, 3841 (2008).
9.Zhang, W., Smith, J.R., and Evans, A.G.: The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3. Acta Mater. 50, 3803 (2002).
10.Shi, S., Tanaka, S., and Kohyama, M.: First-principles investigation of the atomic and electronic structures of α-Al2O3(0001)/Ni(111) interfaces. J. Am. Ceram. Soc. 90, 2429 (2007).
11.Shi, S., Tanaka, S., and Kohyama, M.: First-principles study of the tensile strength and failure of α-Al2O3(0001)/Ni(111) interfaces. Phys. Rev. B 76, 075431 (2007).
12.Ogata, S., Li, J., Hirosaki, N., Shibutani, Y., and Yip, S.: Ideal shear strain of metals and ceramics. Phys. Rev. B 70, 104104 (2004).
13.Aouadi, S.M., Basnyat, P., Zhang, Y., Ge, Q., and Filip, P.: Grain boundary sliding mechanisms in ZrN-Ag, ZrN-Au, and ZrN-Pd nanocomposite films. Appl. Phys. Lett. 88, 021902 (2006).
14.Nakamura, K., Mizoguchi, T., Shibata, N., Matsunaga, K., Yamamoto, T., and Ikuhara, Y.: First-principles study of grain boundary sliding in α-Al2O3. Phys. Rev. B 75, 184109 (2007).
15.Jiang, Y., Wei, Y.G., Smith, J.R., Hutchinson, J.W., and Evans, A.G.: First principles based predictions of the toughness of a metal/oxide interface. Int. J. Mater. Res. 101, 8 (2010).
16.Kresse, G. and Hafner, J.: Abinitio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558 (1993).
17.Kresse, G. and Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
18.Guo, X. and Shang, F.: Reinvestigation of the tensile strength and fracture property of Ni(111)/α-Al2O3(0001) interfaces by first-principle calculations. Comput. Mater. Sci. 50, 1711 (2011).
19.Farkas, D.: Atomistic theory and computer simulation of grain boundary structure and diffusion. J. Phys. Condens. Matter 12, 497 (2000).
20.Duan, W., Karki, B.B., and Wentzcovitch, R.M.: High-pressure elasticity of alumina studied by first principles. Am. Mineral. 84, 1961 (1999).
21.Gieske, J.H. and Barsch, G.R.: Pressure dependence of the elastic constants of single crystalline aluminum oxide. Phys. Status Solidi B 29, 121 (1968).
22.Liu, Y.L., Zhang, Y., Zhou, H.B., Lu, G.H., and Kohyama, M.: Theoretical strength and charge redistribution of fcc Ni in tension and shear. J. Phys. Condens. Matter 20, 335216 (2008).
23.Rice, J.R.: Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239 (1992).
24.Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55 (1962).
25.Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100 (1960).
26.Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525 (1987).
27.Xu, X.P. and Needleman, A.: Void nucleation by inclusion debonding in a crystal matrix. Model. Simul. Mater. Sci. Eng. 1, 111 (1993).
28.Umeno, Y. and Kitamura, T.: Ab initio simulation on ideal shear strength of silicon. Mater. Sci. Eng., B 88, 79 (2002).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed