Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-31T15:49:59.640Z Has data issue: false hasContentIssue false

Shape Forming Simultaneous with Jc Enhancement in REBa2Cu3O7 Superconductors

Published online by Cambridge University Press:  31 January 2011

E. Sudhakar Reddy
Affiliation:
Defence Metallurgical Research Laboratory, P.O. Kanchanbagh, Hyderabad 500 058, India
T. Rajasekharan
Affiliation:
Defence Metallurgical Research Laboratory, P.O. Kanchanbagh, Hyderabad 500 058, India
Get access

Abstract

An infiltration and growth (IG) process which enables the fabrication of three-dimensional (3D) components of REBa2Cu3O7 (RE = Y, Gd, Sm, Nd, etc.) (RE-123) superconductors with a highly textured microstructure is described. The advantages of the process in comparison with conventional melt processing are discussed. The process has been demonstrated to yield highly favorable microstructures in the case Y-123 processed in air, as well as in the case of Gd-123 processed in reduced oxygen partial pressure.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jin, S., Tiefel, T. H., Sherwood, R. C., Van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 28, 1189 (1989).Google Scholar
2.Murakami, M., Morita, M., Doi, K., and Miyamoto, M., Jpn. J. Appl. Phys. 52, 7850 (1988).Google Scholar
3.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).Google Scholar
4.Lian, Z., Pingzian, Z., Ping, J., Keguang, W., Jingrong, W., and Xiaozu, W., Supercond. Sci. Technol. 3, 490 (1990).Google Scholar
5.Tatsuhara, K., Miura, N., Murakami, M., Koshizuka, N., and Tanaka, S., Physica C 185–189, 2479 (1991).CrossRefGoogle Scholar
6.Yoo, S. I., Murakami, M., Sakai, N., Higuchi, T., and Tanaka, S., Jpn. J. Appl. Phys. 33, L1000 (1994).CrossRefGoogle Scholar
7.Shi, D., Sengupta, S., Lou, J. S., Varanasi, C., and McGinn, P. J., Physica C 213, 179 (1993).CrossRefGoogle Scholar
8.Meng, R. L., Kinalidis, C., Sun, Y. Y., Gao, L., Tao, Y. K., Hor, P. H., and Chu, C. W., Nature (London) 345, 326 (1990).Google Scholar
9.Urquhart, A. W., Mater. Sci. Engg. A144, 75 (1991).CrossRefGoogle Scholar
10.Popper, P., Spl. Ceramics 6, 99 (1970).Google Scholar
11.Mironova, M., Selvamanickam, V., Lee, D. F., and Salama, K., J. Mater. Res. 8, 2767 (1993).CrossRefGoogle Scholar
12.Lee, D. F., Mironova, M., Selvamanickam, V., and Salama, K., Interface Sci. 1, 381 (1994).CrossRefGoogle Scholar
13.Saitoh, T.et al., Ins. Symp. Supercond. Kikakyushu, Japan, Nov. 8–11, 1994.Google Scholar
14.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).Google Scholar
15.Sudhakar Reddy, E. and Rajasekharan, T., (unpublished).Google Scholar