Skip to main content Accessibility help
×
Home

Shape control of highly crystallized titania nanorods based on formation mechanism

  • Motonari Adachi (a1), Katsuya Yoshida (a2), Takehiro Kurata (a2), Jun Adachi (a3), Katsumi Tsuchiya (a4), Yasushige Mori (a4) and Fumio Uchida (a5)...

Abstract

A strategic scheme for controlling the shape of titania nanorods while maintaining their highly crystallized state was investigated in terms of the effects of reactant concentration and temperature change on the formation mechanism. Lowering the temperature from 433 to 413 K markedly slowed down the reaction rate and resulted in the coexistence of amorphous-like films and crystalline titania nanorods due to the concurrence of nucleation out of the amorphous phase and particle growth by crystallization. Based on these findings, a strategy for shape control was proposed and long, high aspect ratio titania nanorods in a highly crystallized state were successfully synthesized.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: mo-adachi@fuji-chemical.jp

References

Hide All
1.Centi, G. and Perathoner, S.: The role of nanostructure in improving the performance of electrodes for energy storage and conversion. Eur. J. Inorg. Chem. 2009, 3851 (2009).
2.Hu, X., Li, G., and Yu, J.C.: Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26, 3031 (2010).
3.Manna, L., Scher, E.C., and Alivisatos, A.P.: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700 (2000).
4.Empedocles, S.A., Neuhauser, R., Shimizu, K., and Bawendi, M.G.: Photoluminescence from single semiconductor nanostructures. Adv. Mater. 11, 1243 (1999).
5.Nirmal, M. and Brus, L.: Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32, 407 (1999).
6.Kongkanand, A. and Kamat, P.V.: Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor–SWCNT suspensions. ACS Nano 1, 13 (2007).
7.Law, M., Green, L.E., Johnson, J.C., Saykally, R., and Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005).
8.Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).
9.Martinson, A.B.F., Goes, M.S., Febregat-Santiago, F., Bisquert, J., Pellin, M.J., and Hupp, J.T.: Electron transport in dye-sensitized solar cells based on ZnO Nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics. J. Phys. Chem. A 113, 4015 (2009).
10.Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005).
11.Murray, C.B., Kagan, C.R., and Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocryatal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000).
12.Scher, E.C., Soc, R., Manna, L., and Alivisatos, A.P.: Shape control and applications of nanocrystals. Philos. Trans. R. Soc. London, Ser. A 361, 241 (2003).
13.Peng, X.G., Manna, L., Yang, W.D., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).
14.Song, Q. and Zhang, Z.J.: Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126, 6164 (2004).
15.Reiss, B.D., Mao, C., Solis, D.J., Ryan, K.S., Thomson, T., and Belcher, A.M.: Biological routes to metal alloy ferromagnetic nanostructures. Nano Lett. 4, 1127 (2004).
16.W Yu, W., Wang, Y.A., and Peng, X.: Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 15, 4300 (2003).
17.Tang, Z., Ozturk, B., Wang, Y., and Kotov, N.A.: Simple preparation strategy and one-dimensional energy transfer in CdTe nanoparticle chains. J. Phys. Chem. B 108, 6927 (2004).
18.Tang, Z., Kotov, N.A., and Giersig, M.: Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237 (2002).
19.Masuda, H. and Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).
20.Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., and Tamamura, T.: Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997).
21.Shankar, K., Basham, J.I., Allam, N.K., Varghese, O.K., Mor, G.K., Feng, X., Paulose, M., Seabold, J.A., Choi, K.-S., and Grimes, C.A.: Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 113, 6327 (2009).
22.Ghicov, A. and Schmuki, P.: Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2791 (2009).
23.Rani, S., Roy, S.C., Paulose, M., Varghese, O.K., Mor, G.K., Kim, S., Yoriya, S., Latempa, T.J., and Grimes, C.A.: Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 12, 2780 (2010).
24.Lin, C.-J., Yu, C.W.-Y., and Chien, S.-H.: Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 1073 (2010).
25.Penn, R.L. and Banfield, J.F.: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Science 281, 969 (1998).
26.Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T., and Penn, R.L.: Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751 (2000).
27.Fujihara, K., Kumar, A., Jose, R., Ramakrishna, S., and Uchida, S.: Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology 18, 365709 (2007).
28.Lucky, R.A., Medina-Gonzalez, Y., and Charpentier, P.A.: Zr doping on one-dimensional titania nanomaterials synthesized in supercritical carbon dioxide. Langmuir 26, 19014 (2010).
29.Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).
30.Yang, H.G., Liu, G., Qiao, S.Z., Sun, C.H., Jin, Y.G., Smith, S.C., Zou, J., Cheng, H.M., and Lu, G.Q.: Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 131, 4078 (2009).
31.Garcia, R. and Tello, R.: Size and shape controlled growth of molecular nanostructures on silicon oxide templates. Nano Lett. 4, 1115 (2004).
32.Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).
33.Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841 (2005).
34.Nazeeruddin, M.K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Bessho, T., and Graetzel, M.: Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835 (2005).
35.Sawatsuk, T., Chindaduang, A., Sae-kung, C., Pratontep, S., and Tumcharern, G.: Dye-sensitized solar cells based on TiO2–MWCNTs composite electrodes: Performance improvement and their mechanisms. Diamond Relat. Mater. 18, 524 (2009).
36.Cai, N., Moon, S.-J., Cevey-Ha, L., Moehl, T., Humphry-Baker, R., Wang, P., Zakeeruddin, S.M., and Graetzel, M.: An organic D-pi-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lett. 11, 1452 (2011).
37.Yum, J.-H., Baranoff, E., Wenger, S., Nazeeruddin, M.K., and Graetzel, M.: Panchromatic engineering for dye-sensitized solar cells. Energy Environ. Sci. 4, 842 (2011).
38.Bessho, T., Zakeeruddin, S.M., Yeh, C.-Y., Diau, E.W.-G., and Grätzel, M.: Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew. Chem. Int. Ed. 49, 6646 (2010).
39.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
40.Kudo, A. and Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).
41.Adachi, M., Murata, Y., Takao, J., Jiu, J., Sakamoto, M., and Wang, F.: Highly efficient dye-sensitized solar cells with titania thin film electrode composed of network structure of single-crystal-like TiO2 nanowires made by “oriented attachment” mechanism. J. Am. Chem. Soc. 126, 14943 (2004).
42.Jiu, J., Isoda, S., Wang, F., and Adachi, M.: Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B 110, 2087 (2006).
43.Kurata, T., Mori, Y., Isoda, S., Jiu, J., Tsuchiya, K., Uchida, F., and Adachi, M.: Characterization and formation process of highly crystallized single crystalline TiO2 nanorods for dye-sensitized solar cells. Curr. Nanosci. 6, 269 (2010).
44.Adachi, M., Jiu, J., and Isoda, S.: Synthesis of morphology-controlled titania nanocrystals and application for dye-sensitized solar cells. Curr. Nanosci. 3, 285 (2007).
45.Adachi, M., Jiu, J., Isoda, S., Mori, Y., and Uchida, F.: Self-assembled nanoscale architecture of TiO2 and application for dye-sensitized solar cells. Nanotechnol. Sci. Appl. 1, 1 (2008).
46.Yoshida, K., Jiu, J., Nagamatsu, D., Nemoto, T., Kurata, H., Adachi, M., and Isoda, S.: Structure of TiO2 nanorods formed with double surfactants. Mol. Cryst. Liq. Cryst. 491, 14 (2008).
47.Sugimoto, T., Zhou, X., and Muramatsu, A.: Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method 4. Shape control. J. Colloid Interface Sci. 259, 53 (2003).
48.Connor, P.A., Dobson, K.D., and McQuillan, A.J.: New sol-gel attenuated total reflection infrared spectroscopic method for analysis of adsorption at metal oxide surface in aqueous solution. Chelation of TiO2, ZrO2, and Al2O3 surfaces by catechol, 8-quinolinol, and acetylacetone. Langmuir 11, 4193 (1995).
49.Jiu, J., Wang, F., Sakamoto, M., Takao, J., and Adachi, M.: Preparation of nanocrystaline TiO2 with mixed template and its application for dye-sensitized solar cells. J. Electrochem. Soc. 151, A1653 (2004).
50.Jiu, J., Isoda, S., Adachi, M., and Wang, F.: Preparation of TiO2 nanocrystalline with 3–5 nm and application for dye-sensitized solar cell. J. Photochem. Photobiol., A 189, 314 (2007).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed