Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T03:27:12.291Z Has data issue: false hasContentIssue false

Sensitive detection of mercury (II) ion using wave length-tunable visible-emitting gold nanoclusters based on protein-templated synthesis

Published online by Cambridge University Press:  29 October 2014

Mei Yang
Affiliation:
Research Center of Analytical Instrumentation, Analytical and Testing Center, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
Jun Yao
Affiliation:
Research Center of Analytical Instrumentation, Analytical and Testing Center, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
Yu Liu
Affiliation:
Research Center of Analytical Instrumentation, Analytical and Testing Center, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
Yixiang Duan*
Affiliation:
Research Center of Analytical Instrumentation, Analytical and Testing Center, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
*
a)Address all correspondence to this author. e-mail: yduan@scu.edu.cn
Get access

Abstract

In this study, a simple, facile, green, and versatile strategy was developed for the synthesis of water-soluble and well-dispersed fluorescent gold nanoclusters (Au NCs) with wave length-tunable emissions using protein as capping agent and template. The resultant Au NCs exhibited excellent characteristics such as large Stokes shift, good stability, and high resistance to photobleaching. They showed strong emission at 680 nm, with a quantum yield of 4.5%. Heavy metal ion (Hg2+) could quench the fluorescence of Au NCs efficiently and thus the as-prepared Au NCs were successfully developed as “turn-off” fluorescent probes for the detection of Hg2+ sensitively and selectively. The lowest concentration to quantify mercuric ions could be as low as 1 nM and the fluorescence intensity of the Au NCs was proportional to the concentrations of Hg2+ over the range 8 × 10−8 M to 1 × 10−5 M (R = 0.9982). To validate the practicality of this probe, real water samples spiked with Hg2+ were determined with RSD values less than 3%. And the results demonstrated that the developed probes worked well in environmental samples. The action mechanism between the Au NCs and Hg2+ was explored as well.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Guo, Y., Wang, Z., Qu, W., Shao, H., and Jiang, X.: Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens. Bioelectron. 26(10), 4064 (2011).Google Scholar
Xue, X., Wang, F., and Liu, X.: One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. 130(11), 3244 (2008).Google Scholar
Yang, W., Gooding, J.J., He, Z., Li, Q., and Chen, G.: Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles. J. Nanosci. Nanotechnol. 7(2), 712 (2007).Google Scholar
Ma, Y.R., Niu, H.Y., and Cai, Y.Q.: Colorimetric detection of copper ions in tap water during the synthesis of silver/dopamine nanoparticles. Chem. Commun. 47(47), 12643 (2011).Google Scholar
Liu, J. and Lu, Y.: Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 126(39), 12298 (2004).Google Scholar
Li, T., Wang, E., and Dong, S.: Lead (II)-induced allosteric g-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Anal. Chem. 82(4), 1515 (2010).Google Scholar
Aragay, G., Pons, J., and Merkoçi, A.: Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111(5), 3433 (2011).Google Scholar
Lee, J-S., Han, M.S., and Mirkin, C.A.: Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem., Int. Ed. 119(22), 4171 (2007).CrossRefGoogle Scholar
Hanumegowda, N.M., White, I.M., and Fan, X.: Aqueous mercuric ion detection with microsphere optical ring resonator sensors. Sens. Actuators, B 120(1), 207 (2006).Google Scholar
Huang, J-H., Wen, , Sun, Y-Y., Chou, P-T., and Fang, J-M.: Two-stage sensing property via a conjugated donor−acceptor−donor constitution: Application to the visual detection of mercuric ion. J. Org. Chem. 70(15), 5827 (2005).Google Scholar
Vanatta, L., Vanatta, J., and Riviello, J.: Ion-chromatographic study of the possible absorption of copper and zinc by the skin of Rana pipiens. J. Chromatogr. A 884(1), 143 (2000).Google Scholar
Gustin, S.M., Coolbaugh, M., Engle, M., Fitzgerald, B., Keislar, R., Lindberg, S., Nacht, D., Quashnick, J., Rytuba, J., and Sladek, C.: Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains. Environ. Geol. 43(3), 339 (2003).Google Scholar
Darbha, G.K., Singh, A.K., Rai, U.S., Yu, E., Yu, H., and Chandra Ray, P.: Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J. Am. Chem. Soc. 130(25), 8038 (2008).Google Scholar
Darbha, G.K., Ray, A., and Ray, P.C.: Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. ACS Nano 1(3), 208 (2007).CrossRefGoogle ScholarPubMed
Lawrence, N.S., Davis, J., and Compton, R.G.: Analytical strategies for the detection of sulfide: A review. Talanta 52(5), 771 (2000).Google Scholar
Lee, D-N., Kim, G-J., and Kim, H-J.: A fluorescent coumarinylalkyne probe for the selective detection of mercury (II) ion in water. Tetrahedron Lett. 50(33), 4766 (2009).Google Scholar
Li, D., Wieckowska, A., and Willner, I.: Optical analysis of Hg2+ ions by oligonucleotide–gold-nanoparticle hybrids and DNA-based machines. Angew. Chem., Int. Ed. 120(21), 3991 (2008).Google Scholar
Yuan, M., Li, Y., Li, J., Li, C., Liu, X., Lv, J., Xu, J., Liu, H., Wang, S., and Zhu, D.: A colorimetric and fluorometric dual-modal assay for mercury ion by a molecule. Org. Lett. 9(12), 2313 (2007).CrossRefGoogle ScholarPubMed
Wang, H. and Chan, W-H.: Cholic acid-based fluorescent sensor for mercuric and methyl mercuric ion in aqueous solutions. Tetrahedron 63(36), 8825 (2007).Google Scholar
Lee, M.H., Cho, B-K., Yoon, J., and Kim, J.S.: Selectively chemodosimetric detection of Hg(II) in aqueous media. Org. Lett. 9(22), 4515 (2007).Google Scholar
Nolan, E.M. and Lippard, S.J.: Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 108(9), 3443 (2008).Google Scholar
Bridges, C.C. and Zalups, R.K.: Transport of inorganic mercury and methylmercury in target tissues and organs. J. Toxicol. Environ. Health, Part B 13(5), 385 (2010).Google Scholar
Que, E.L., Domaille, D.W., and Chang, C.J.: Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev. 108(5), 1517 (2008).CrossRefGoogle ScholarPubMed
Chah, S., Yi, J., and Zare, R.N.: Surface plasmon resonance analysis of aqueous mercuric ions. Sens. Actuators, B 99(2), 216 (2004).Google Scholar
Nolan, E.M. and Lippard, S.J.: A “turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc. 125(47), 14270 (2003).Google Scholar
Xie, J., Zheng, Y., and Ying, J.Y.: Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem. Commun. 46(6), 961 (2010).Google Scholar
Prakash, O., Talat, M., Hasan, S.H., and Pandey, R.K.: Enzymatic detection of mercuric ions in ground-water from vegetable wastes by immobilizing pumpkin (Cucumis melo) urease in calcium alginate beads. Bioresour. Technol. 99(10), 4524 (2008).Google Scholar
Knecht, M.R. and Sethi, M.: Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Anal. Bioanal. Chem. 394(1), 33 (2009).Google Scholar
Yuan, C., Zhang, K., Zhang, Z., and Wang, S.: Highly selective and sensitive detection of mercuric ion based on a visual fluorescence method. Anal. Chem. 84(22), 9792 (2012).Google Scholar
Mu, Q., Li, Y., Xu, H., Ma, Y., Zhu, W., and Zhong, X.: Quantum dots-based ratiometric fluorescence probe for mercuric ions in biological fluids. Talanta 119, 564 (2014).Google Scholar
Bings, N.H., Bogaerts, A., and Broekaert, J.A.: Atomic spectroscopy. Anal. Chem. 78(12), 3917 (2006).Google Scholar
Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025 (2005).Google Scholar
Frasco, M.F. and Chaniotakis, N.: Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9(9), 7266 (2009).Google Scholar
Sanchez-Rodas, D., Corns, W., Chen, B., and Stockwell, P.: Atomic fluorescence spectrometry: A suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury. J. Anal. At. Spectrom. 25(7), 933 (2010).Google Scholar
Leopold, K., Foulkes, M., and Worsfold, P.: Methods for the determination and speciation of mercury in natural waters—A review. Anal. Chim. Acta 663(2), 127 (2010).Google Scholar
Kim, H.N., Ren, W.X., Kim, J.S., and Yoon, J.: Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 41(8), 3210 (2012).Google Scholar
Culzoni, M., de la Peña, A.M., Machuca, A., Goicoechea, H., and Babiano, R.: Rhodamine and BODIPY chemodosimeters and chemosensors for the detection of Hg2+, based on fluorescence enhancement effects. Anal. Methods 5(1), 30 (2013).Google Scholar
Chen, Y., Bai, H., Hong, W., and Shi, G.: Fluorescence detection of mercury ions in aqueous media with the complex of a cationic oligopyrene derivative and oligothymine. Analyst 134(10), 2081 (2009).Google Scholar
Yang, Y., Gou, X., Blecha, J., and Cao, H.: A highly selective pyrene based fluorescent sensor toward Hg2+ detection. Tetrahedron Lett. 51(26), 3422 (2010).Google Scholar
Costa-Fernández, J.M., Pereiro, R., and Sanz-Medel, A.: The use of luminescent quantum dots for optical sensing. TrAC, Trends Anal. Chem. 25(3), 207 (2006).Google Scholar
Zhang, D., Wang, X., Qiao, Z-A., Tang, D., Liu, Y., and Huo, Q.: Synthesis and characterization of novel lanthanide (III) complexes-functionalized mesoporous silica nanoparticles as fluorescent nanomaterials. J. Phys. Chem. C 114(29), 12505 (2010).Google Scholar
Yang, M., Yao, J., and Duan, Y.: Graphene and its derivatives for cell biotechnology. Analyst 138(1), 72 (2012).Google Scholar
Lu, J., Yang, J-X., Wang, J., Lim, A., Wang, S., and Loh, K.P.: One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8), 2367 (2009).Google Scholar
Zheng, J., Zhang, C., and Dickson, R.M.: Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 93(7), 077402 (2004).Google Scholar
Rosi, N.L. and Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105(4), 1547 (2005).CrossRefGoogle ScholarPubMed
Yao, J., Yang, M., and Duan, Y.: Chemistry, biology and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics and therapy. Chem. Rev. 114(12), 6130 (2014).Google Scholar
Yao, J., Sun, Y., Yang, M., and Duan, Y.: Chemistry, physics and biology of graphene-based nanomaterials: New horizons for sensing, imaging and medicine. J. Mater. Chem. 22(29), 14313 (2012).Google Scholar
Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891 (2007).Google Scholar
Wang, J.: Nanomaterial-based electrochemical biosensors. Analyst 130(4), 421 (2005).Google Scholar
Hampp, E., Botah, R., Odusanya, O.S., Anuku, N., Malatesta, K.A., and Soboyejo, W.O.: Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment. J. Mater. Res. 27(22), 2891 (2012).Google Scholar
Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107(3), 668 (2003).Google Scholar
Guo, S. and Wang, E.: Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 598(2), 181 (2007).Google Scholar
Luo, X., Morrin, A., Killard, A.J., and Smyth, M.R.: Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4), 319 (2006).Google Scholar
Jin, R.: Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3), 343 (2010).Google Scholar
Shiang, Y-C., Huang, C-C., Chen, W-Y., Chen, P-C., and Chang, H-T.: Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J. Mater. Chem. 22(26), 12972 (2012).Google Scholar
Shang, L., Dong, S., and Nienhaus, G.U.: Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 6(4), 401 (2011).Google Scholar
Pissuwan, D., Niidome, T., and Cortie, M.B.: The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Controlled Release 149(1), 65 (2011).Google Scholar
Oh, E., Susumu, K., Goswami, R., and Mattoussi, H.: One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities. Langmuir 26(10), 7604 (2010).Google Scholar
Daniel, M-C. and Astruc, D.: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293 (2003).CrossRefGoogle Scholar
Kawasaki, H., Hamaguchi, K., Osaka, I., and Arakawa, R.: pH-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv. Funct. Mater. 21(18), 3508 (2011).Google Scholar
Chen, H., Li, B., Wang, C., Zhang, X., Cheng, Z., Dai, X., Zhu, R., and Gu, Y.: Characterization of a fluorescence probe based on gold nanoclusters for cell and animal imaging. Nanotechnology 24(5), (2013).Google Scholar
Liu, C-L., Wu, H-T., Hsiao, Y-H., Lai, C-W., Shih, C-W., Peng, Y-K., Tang, K-C., Chang, H-W., Chien, Y-C., Hsiao, J-K., Cheng, J-T., and Chou, P-T.: Insulin-directed synthesis of fluorescent gold nanoclusters: Preservation of insulin bioactivity and versatility in cell imaging. Angew. Chem., Int. Ed. 50(31), 7056 (2011).CrossRefGoogle ScholarPubMed
Zheng, C., Wang, H., Xu, W., Xu, C., Liang, J., and Han, H.: Study on the interaction between histidine-capped Au nanoclusters and bovine serum albumin with spectroscopic techniques. Spectrochim. Acta, Part A 118(0), 897 (2014).Google Scholar
Mu, X., Qi, L., Dong, P., Qiao, J., Hou, J., Nie, Z., and Ma, H.: Facile one-pot synthesis of L-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosens. Bioelectron. 49, 249 (2013).Google Scholar
Venkatesh, V., Shukla, A., Sivakumar, S., and Verma, S.: Purine-stabilized Green fluorescent gold nanoclusters for cell nuclei imaging applications. ACS Appl. Mater. Interfaces 6(3), 2185 (2014).Google Scholar
Hemmateenejad, B., Shakerizadeh-shirazi, F., and Samari, F.: BSA-modified gold nanoclusters for sensing of folic acid. Sens. Actuators, B 199, 42 (2014).Google Scholar
Dai, H., Shi, Y., Wang, Y., Sun, Y., Hu, J., Ni, P., and Li, Z.: Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg2+ to gold nanoclusters. Biosens. Bioelectron. 53(0), 76 (2014).Google Scholar
Zhuang, M., Ding, C., Zhu, A., and Tian, Y.: Ratiometric fluorescence probe for monitoring hydroxyl radical in live cells based on gold nanoclusters. Anal. Chem. 86(3), 1829 (2014).Google Scholar
Liu, H., Zhang, X., Wu, X., Jiang, L., Burda, C., and Zhu, J-J.: Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (II) sensing. Chem. Commun. 47(14), 4237 (2011).Google Scholar
Lin, C.A.J., Yang, T-Y., Lee, C-H., Huang, S.H., Sperling, R.A., Zanella, M., Li, J.K., Shen, J-L., Wang, H-H., Yeh, H-I., Parak, W.J., and Chang, W.H.: Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3(2), 395 (2009).Google Scholar
Muhammed, M.A.H., Verma, P.K., Pal, S.K., Retnakumari, A., Koyakutty, M., Nair, S., and Pradeep, T.: Luminescent quantum clusters of gold in bulk by albumin-induced core etching of nanoparticles: Metal ion sensing, metal-enhanced luminescence, and Biolabeling. Chem. -Eur. J. 16(33), 10103 (2010).Google Scholar
Chen, P.C., Chiang, C.K., and Chang, H.T.: Synthesis of fluorescent BSA-Au NCs for the detection of Hg2+ ions. J. Nanopart. Res. 15(1), 10 (2013).Google Scholar
Zhu, X., Chen, L., Lin, Z., Qiu, B., and Chen, G.: A highly sensitive and selective “signal-on” electrochemiluminescent biosensor for mercury. Chem. Commun. 46(18), 3149 (2010).Google Scholar
Huang, C-C. and Chang, H-T.: Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem. Commun. (12), 1215 (2007).Google Scholar
Yu, C-J. and Tseng, W-L.: Colorimetric detection of mercury (II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate. Langmuir 24(21), 12717 (2008).Google Scholar
Wei, H., Wang, Z., Yang, L., Tian, S., Hou, C., and Lu, Y.: Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg2+ sensor. Analyst 135(6), 1406 (2010).Google Scholar
Hu, D., Sheng, Z., Gong, P., Zhang, P., and Cai, L.: Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters. Analyst 135(6), 1411 (2010).Google Scholar
Kawasaki, H., Yoshimura, K., Hamaguchi, K., and Arakawa, R.: Trypsin-stabilized fluorescent gold nanocluster for sensitive and selective Hg2+ detection. Anal. Sci. 27(6), 591 (2011).Google Scholar
Liu, S-J., Nie, H-G., Jiang, J-H., Shen, G-L., and Yu, R-Q.: Electrochemical sensor for mercury (II) based on conformational switch mediated by interstrand cooperative coordination. Anal. Chem. 81(14), 5724 (2009).Google Scholar
Wang, C-I., Huang, C.C., Lin, Y-W., Chen, W-T., and Chang, H-T.: Catalytic gold nanoparticles for fluorescent detection of mercury (II) and lead (II) ions. Anal. Chim. Acta 745, 124 (2012).Google Scholar
Shang, L., Yang, L., Stockmar, F., Popescu, R., Trouillet, V., Bruns, M., Gerthsen, D., and Nienhaus, G.U.: Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale 4(14), 4155 (2012).Google Scholar
Feng, J-J., Huang, H., Zhou, D-L., Cai, L-Y., Tu, Q-Q., and Wang, A-J.: Peptide-templated synthesis of wavelength-tunable fluorescent gold nanoparticles. J. Mater. Chem. C 1, 4720 (2013).Google Scholar
Feng, J-J., Huang, H., Chen, W-J., Chen, J-R., Lin, H-J., and Wang, A-J.: Sensitive detection of mercury (II) ion using water-soluble captopril-stabilized fluorescent gold nanoparticles. Mater. Sci. Eng., C 33(5), 2664 (2013).Google Scholar