Skip to main content Accessibility help

Semitransparent all-oxide p-NiO/n-ZnO nanowire ultraviolet photosensors

  • Ki Ryong Lee (a1), Byung Oh Jung (a1), Sung Woon Cho (a1), Karuppanan Senthil (a1) and Hyung Koun Cho (a1)...


All-oxide ultraviolet (UV) photosensors based on NiO/ZnO nanowire heterostructure were fabricated on corning glass substrates. The p-type NiO layers were directly deposited on the ZnO nanowire arrays grown on the AZO bottom electrode/glass for the formation of a p–n diode, followed by the growth of the ITO top electrode layer for the electrical interconnection of nanostructures. The fabricated device structure showed a transmittance value of about 60% in the visible region, resulting in semitransparent properties. The current–voltage (IV) characteristics of the fabricated p–n heterostructure showed a typical rectifying behavior with a current rise at about 4 V and an I(forward)/I(reverse) ratio of about 11.3 at 8 V. In addition, the ITO/p-NiO/n-ZnO/AZO structure responded at a wave-length position of 370 nm in reverse bias, together with weak photoresponse in the visible region. An UV sensor based on the all-oxide ZnO nanowire absorber exhibited improved photoresponse compared to the device based on a ZnO thin film.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Ohta, H., Kawamura, K., Orita, M., Hirano, M., Sarukura, N., and Hosono, H.: Current injection emission from a transparent p–n junction composed of p-SrCu2O2/n-ZnO. Appl. Phys. Lett. 77, 475 (2000).
2.Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., and Hosono, H.: Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269 (2003).
3.Hoffman, R.L., Norris, B.J., and Wager, J.F.: ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733 (2003).
4.Yang, W., Hullavarad, S., Nagaraj, B., Takeuchi, I., Sharma, R., Venkatesan, T., Vispute, R., and Shen, H.: Compositionally-tuned epitaxial cubic MgZnO on Si (100) for deep ultraviolet photodetectors. Appl. Phys. Lett. 82, 3424 (2003).
5.Monroy, E., Calle, F., Pau, J., Munoz, E., Omnes, F., Beaumont, B., and Gibart, P.: AlGaN-based UV photodetectors. J. Cryst. Growth 230, 537 (2001).
6.Pan, Z.W., Dai, Z.R., and Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).
7.Gu, Y., Kuskovsky, I.L., Yin, M., OBrien, S., and Neumark, G.: Quantum confinement in ZnO nanorods. Appl. Phys. Lett. 85, 3833 (2004).
8.Liang, S., Sheng, H., Liu, Y., Huo, Z., Lu, Y., and Shen, H.: ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225, 110 (2001).
9.Razeghi, M. and Rogalski, A.: Semiconductor ultraviolet detectors. J. Appl. Phys. Lett. 79, 7433 (1996).
10.Mares, J., Boutwell, R., Wei, M., Scheurer, A., and Schoenfeld, W.: Deep-ultraviolet photodetectors from epitaxially grown NixMg1-xO. Appl. Phys. Lett. 97, 161113 (2010).
11.Mares, J., Boutwell, C., Scheurer, A., Falanga, M., and Schoenfeld, W.: Cubic ZnxMg1-xO and NixMg1-xO thin films grown by molecular beam epitaxy for deep-UV optoelectronic applications, in Proceedings of the SPIE 2010 International, San Francisco, 2010 (SPIE, San Francisco, CA, 2010), p. 76031B.
12.Kim, D.C., Seo, S., Ahn, S.E., Suh, D.S., Lee, M.J., Park, B.H., Yoo, I.K., Baek, I., Kim, H.J., and Ryu, B.I.: Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl. Phys. Lett. 88, 202102 (2006).
13.Kim, D.C., Mahanta, S.K., Kong, B.H., Cho, H.K., and Kim, H.S.: ZnO nanorod arrays grown on glass substrates below glass transition temperature by metalorganic chemical vapor deposition. J. Mater. Sci. - Mater. Electron. 20, 245 (2009).
14.Zhang, J. and Que, W.: Preparation and characterization of sol–gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method. Sol. Energy Mater. Sol. Cells 94, 2181 (2010).
15.Kim, D.C., Jung, B.O., Kwon, Y.H., and Cho, H.K.: Highly sensible ZnO nanowire ultraviolet photodetectors based on mechanical Schottky contact. J. Electrochem. Soc. 159, K10 (2011).
16.Mohanta, S., Kim, D., Cho, H., Chua, S., and Tripathy, S.: Structural and optical properties of ZnO nanorods grown by metal organic chemical vapor deposition. J. Cryst. Growth 310, 3208 (2008).
17.Yao, B., Chan, Y., and Wang, N.: Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81, 757 (2002).
18.Hari, P., Baumer, M., Tennyson, W., and Bumm, L.: ZnO nanorod growth by chemical bath method. J. Non-Cryst. Solids 354, 2843 (2008).
19.Kim, D.C., Kong, B.H., Cho, H.K., Park, D.J., and Lee, J.Y.: Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metal organic chemical vapor deposition. Nanotechnology 18, 015603 (2006).
20.Liu, B. and Zeng, H.C.: Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430 (2003).
21.Kong, B.H., Choi, M.K., Cho, H.K., Kim, J.H., Baek, S., and Lee, J.H.: Conformal coating of conductive ZnO: Al films as transparent electrodes on high aspect ratio Si microrods. Electrochem. Solid-State Lett. 13, K12 (2010).
22.Lee, J.H., Kwon, Y.H., Kong, B.H., Lee, J.Y., and Cho, H.K.: Biepitaxial growth of high-quality semiconducting NiO thin films on (0001) Al2O3 substrates: Microstructural characterization and electrical properties. Cryst. Growth Des. 12, 2495 (2012).
23.Kong, B.H., Mohanta, S.K., Kim, D.C., and Cho, H.K.: Optical and structural properties of ZnO thin films grown on various substrates by metal organic chemical vapor deposition. Physica B 401, 399 (2007).
24.Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D., Park, J., Bao, X., Lo, Y-H., and Wang, D.: ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003 (2007).
25.Ji, L., Peng, S., Su, Y.K., Young, S.J., Wu, C., and Cheng, W.: Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays. Appl. Phys. Lett. 94, 203106 (2009).
26.Kwon, Y.H., Chun, S.H., Han, J-H., and Cho, H.K.: Correlation between electrical properties and point defects in NiO thin films. Met. Mater. Int. 18, 1003 (2012).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed