Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T16:52:32.824Z Has data issue: false hasContentIssue false

SEM and electrical studies of current induced superconducting-resistive transitions in Y1Ba2Cu3O7−x thin films

Published online by Cambridge University Press:  31 January 2011

A. Frenkel
Affiliation:
Bellcore, Morristown, New Jersey 07960
C. C. Chang
Affiliation:
Bellcore, Red Bank, New Jersey 07701
E. Clausen
Affiliation:
Bellcore, Red Bank, New Jersey 07701
T. Venkatesan
Affiliation:
Bellcore, Red Bank, New Jersey 07701
P. S. D. Lin
Affiliation:
Bellcore, Red Bank, New Jersey 07701
X. D. Wu
Affiliation:
Physics Department, Rutgers University, Piscataway, New Jersey 08854
A. Inam
Affiliation:
Physics Department, Rutgers University, Piscataway, New Jersey 08854
B. Lalevic
Affiliation:
Electrical and Computer Engineering Department, Rutgers University, Piscataway, New Jersey 08855
Get access

Abstract

We studied the electrical current induced superconducting-resistive transitions in laser deposited c-axis oriented crystalline Y1Ba2Cu3O7−x superconducting thin films. Comparative studies of I-V characteristics of thin film bridges with different geometries at temperatures below Tc and SEM voltage imaging of current induced resistive regions in the same samples were performed. The I-V curves of these bridges had two nonlinear regimes, a gradual and an abrupt transition to the normal state. We concluded that the gradual nonlinear transition is caused by imperfections in the sample such as film and substrate defects, film thickness variation, etc., and by dissipative effects such as flux motion and superconductor/normal-metal/superconductor type behavior. The abrupt transition to the normal state in the I-V curve is ascribed to Joule heating. The SEM mapping provides a direct image of the above effects and is useful for material or device characterization and for studying the transport properties of high Tc films.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Palstra, T.T. M., Batlogg, B., van Dover, R. B., Shneemeye, L. F. and Waszczak, J. V., Appl. Phys. Lett. 54, 763 (1989); T. T. M. Pals B. Batlogg, L. F. Shneemeyer, and J.V. Waszczak, Phys. Rev. Le 61, 1622 (1989).CrossRefGoogle Scholar
2Yeshurun, Y. and Malozemoff, A. P., Phys. Rev. Lett. 60, 220 (1988).CrossRefGoogle Scholar
3Tinkham, M., Phys. Rev. Lett. 61, 1658 (1988).CrossRefGoogle Scholar
4Mannhart, J., Chaudhary, P., Dimos, D., Tsuei, C. C., and McGuire, T. R, Phys. Rev. Lett. 61, 2476 (1988).CrossRefGoogle Scholar
5Ogale, S. B., Dijkkamp, D., Venkatesan, T., Wu, X.D., and Inam, A, Phys. Rev. B 36, 7210 (1987).CrossRefGoogle Scholar
6England, P., Venkatesan, T., Wu, X.D., Inam, A., Hegd, M.S., Cheeks, T. L., and Craighead, H. G., Appl. Phys. Lett. 53, 23336 (1988).Google Scholar
7Frenkel, A., Venkatesan, T., Lin, C., Wu, X.D., Hegde, M.S., Inam, A., and Dutta, B., Appl. Phys. Lett. 53, 2704 (1988).CrossRefGoogle Scholar
8Tzeng, Y., Cutshaw, C., Roppel, T., Wu, C., Tanger, C.W., Belser, M., Williams, R., Czekala, L., Fernandez, M., and Askew, R., Appl.Phys. Lett. 54, 949 (1989).CrossRefGoogle Scholar
9Frenkel, A., Saifi, M. A., Venkatesan, T., Lin, C., Wu, X. D., and Inam, A., Appl. Phys. Lett. 55, 911 (1989).CrossRefGoogle Scholar
10Frenkel, A., Clausen, E., Chang, C. C., Venkatesan, T., Lin, P. S. D., Wu, X. D., Inam, A., and Lalevic, B., Appl. Phys. Lett. 55, 911 (1989).CrossRefGoogle Scholar
11Venkatesan, T., Wu, X.D., Inam, A., Hegde, M.S., Chase, E.W., Chang, C. C., England, P., Hwang, D. M., Krchnavek, R., Wachtman, J. B., McLean, W. L., Levi-Setty, R., Chabala, J., and Wang, Y. L, in Chemistry of High Temperature Superconductors II, ACS Symposium Series 344, edited by Nelson, D. L. and George, T. F.(Amer. Chem. Soc, Washington, DC, 1988), p. 234.CrossRefGoogle Scholar
12Chang, C.C., Wu, X.D., Inam, A., Hwang, D.M., Venkatesan, T., Barboux, P., and Tarascon, J. M., Appl. Phys. Lett. 53, 517 (1988).CrossRefGoogle Scholar
13Hwang, D.M., Venkatesan, T., Chang, C.C., Nazar, L., Wu, X.D., Inam, A., and Hegde, M. S., Phys. Rev. Lett. 54, 1702 (1989).Google Scholar
14Ekin, J.W., Panson, A. J., and Blakenship, B. A., Appl. Phys. Lett. 52, 331 (1988).CrossRefGoogle Scholar
15Clem, J. R. and Huebener, R. P., J. Appl. Phys. 51, 2764 (1980).CrossRefGoogle Scholar
16Gross, R. and Koyanagi, M., J. Low Temp. Phys. 60, 277 (1985).CrossRefGoogle Scholar
17Gross, R., Hartmann, M., Hipler, K., Huebener, R. P., Kober, F., and Koelle, D., IEEE Trans. Magn. 25, 2250 (1989).CrossRefGoogle Scholar
18Monroe, D., Brocklesby, W.S., Farrow, R. C., Hong, M., and Liou, S. H., Appl. Phys. Lett. 53, 1210 (1988).CrossRefGoogle Scholar
19Millman, W.S., Ulla, M., Han, Zhilan, Maclaurin, M., and Tonner, B.P., Journal of Materials Research 2, 543 (1987).CrossRefGoogle Scholar
20Schubnikow, L.W. and Alekseyevsky, N. E., Nature (London) 138, 804 (1936).CrossRefGoogle Scholar
21Dubson, M.A., Herbert, S.T., Calabrese, J. J., Harris, D. C., Patton, B. R., and Garland, J. C., Phys. Rev. Lett. 60, 1061 (1988).CrossRefGoogle Scholar
22Rogers, C.T. (private communication).Google Scholar
23Bremer, J.W. and Newhouse, V. L., Phys. Rev. Lett. 1, 282 (1958); J.W. Bremer and V. L. Newhouse, Phys. Rev. 116, 309 (1959).CrossRefGoogle Scholar
24Ehrenberg, W. and Gibbons, D. J., Electron Bombardment Induced Conductivity and Its Applications (Academic Press, 1981).Google Scholar
25Enomoto, Y., Murakami, T., Suzuki, M., and Moriwaki, K., Jpn. J. Appl. Phys. 26, L1248 (1987).CrossRefGoogle Scholar
26Anderson, P.W., Phys. Rev. Lett. 9, 309 (1962).CrossRefGoogle Scholar
27de Gennes, P. G., Rev. Mod. Phys. 36, 225. (1964); P. G. de Gennes, Superconductivity in Metals and Alloys (Benjamin, New York 1966).CrossRefGoogle Scholar
28Fiory, A.T., Hebard, A. F., Mankiewich, P. M., and Howard, R. E., Phys. Rev. Lett. 61, 1419 (1988).CrossRefGoogle Scholar
29Epstein, K., Goldman, A. M., and Kadin, A. M., Phys. Rev. Lett. 47, 534 (1981).CrossRefGoogle Scholar