Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T19:35:13.072Z Has data issue: false hasContentIssue false

Self-propagating high-temperature synthesis microalloying of MoSi2 with Nb and V

Published online by Cambridge University Press:  31 January 2011

F. Maglia
Affiliation:
Department of Physical Chemistry, and IENI/CNR, University of Pavia, Viale Taramelli 16 27100 Pavia, Italy
C. Milanese
Affiliation:
Department of Physical Chemistry, and IENI/CNR, University of Pavia, Viale Taramelli 16 27100 Pavia, Italy
U. Anselmi-Tamburini
Affiliation:
Department of Physical Chemistry, and IENI/CNR, University of Pavia, Viale Taramelli 16 27100 Pavia, Italy, and Department Chemical Engineering and Materials Science, University of California, Davis, California 95616
Z. A. Munir
Affiliation:
Department Chemical Engineering and Materials Science, University of California, Davis, California 95616
Get access

Abstract

Microalloying of MoSi2 to form Mo(1−x)MexSi2 (Me = Nb or V) was investigated by the self-propagating high-temperature synthesis method. With alloying element contents up to 5 at.%, a homogeneous C11b solid solution was obtained. For higher contents of alloying elements, the product contained both the C11b and the hexagonal C40 phases. The relative amount of the C40 phase increases with an increase in the content of alloying metals in the starting mixture. The alloying element content in the hexagonal C40 Mo(1−x)MexSi2 phase was nearly constant at a level of about 12 at.% for all starting compositions. In contrast, the content of the alloying elements in the tetragonal phase is considerably lower (around 4 at.%) and increases slightly as the Me content in the starting mixture is increased.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chin, S., Anton, D.L., and Giamei, F., in High Temperature Silicides and Refractory Alloys, edited by Briant, C.L., Petrovic, J.J., Bewlay, B.P., Vasudevan, A.K., and Lipsitt, H.A. (Mater. Res. Soc. Symp. Proc. 322, Pittsburgh, PA, 1994), p. 423.Google Scholar
Subramanian, P.R., Mendiratta, M.G., Dimiduk, D.M., and Stucke, M.A., Mater. Sci. Eng. A 240, 1 (1997).Google Scholar
Petrovic, J.J. and Vasudevan, A.K., Mater. Sci. Eng. A 261, 1 (1999).Google Scholar
Mitchell, T.E., Castro, R.G., Petrovic, J.J., Maloy, S.A., Unal, O., Chadwick, M.M., Mater. Sci. Eng. A 155, 241 (1992).CrossRefGoogle Scholar
Milne, J., Instant Heat (Kinetic Metals, Derby, CT, 1985).Google Scholar
Wade, R.K. and Petrovic, J.J., J. Am. Ceram. Soc. 75, 1682 (1992).Google Scholar
Misra, A., Sharif, A.A., Petrovic, J.J., and Mitchell, T.E., in High-Temperature Ordered Intermetallic Alloys IX, edited by Schneibel, J.H., Hanada, S., Hemker, K.J., Noebe, R.D., and Sauthoff, G. (Mater. Res. Soc. Symp. Proc. Pittsburgh, PA, 646, (2000), p. 1.Google Scholar
Yanagihara, K., Maruyama, T., and Nagata, K., Intermetallics 4, S133 (1996).Google Scholar
Stergiou, A., Tsakiropoulos, P., and Brown, A., Intermetallics 5, 69 (1997)Google Scholar
Alman, D.E. and Stoloff, N.S., Metall. Mater. Trans. A 25A, 1033 (1994)CrossRefGoogle Scholar
Ito, K., Yano, T., Nakamoto, T., Inui, H., and Yamaguchi, M., Intermetallics 4, S119 (1996).Google Scholar
Waghmare, U.V., Kaxiras, E., Bulatov, V.V., and Duesbery, M.S., Modelling Simul. Mater. Sci. Eng. 6, 493 (1998).Google Scholar
Woolman, J.N., Petrovic, J.J., and Munir, Z.A., Scipta Mater. 48, 819 (2003).Google Scholar
Woolman, J.N., Ph.D. Thesis, University of California, Davis, CA (2003).Google Scholar
Yi, D., Lai, Z., Yi, C., Akselsen, O.M., and Ulvensoen, J.H., Metall. Mater. Trans. 29A, 119 (1998).CrossRefGoogle Scholar
Boettinger, W.J., Perepezko, J.H., and Frankwicz, P.S., Mater. Sci Eng. A 155, 33 (1992).Google Scholar
Fan, X. and Ishigaki, T., J. Cryst. Growth 171, 166 (1997).Google Scholar
Harada, Y., Funato, Y., Morinaga, M., Ito, A., and Sugita, Y., J. Jpn. Inst. Met. 58, 1239 (1994).Google Scholar
Sarkisyan, A.R., Dulokhanyan, S.K., Borvinskaya, I.P., and Merzhanov, A.G., Combust. Explos. Shock Wave 14, 310 (1978).Google Scholar
Zhang, S. and Munir, Z.A., J. Mater. Sci. 26, 3685 (1991).Google Scholar
Deevi, S.C., Mater. Sci. Eng. A 149, 241 (1992).Google Scholar
Shon, I.J. and Munir, Z.A., Mater. Sci. Eng. A 202, 256 (1995).Google Scholar
Bhaduri, S.B., Huang, J.G., Bhaduri, S., and Chrysanthou, A., Ceram. Eng. Sci. Proc. 19, 405 (1998).CrossRefGoogle Scholar
Deevi, S.C., J. Mater. Sci. 26, 3343 (1991).CrossRefGoogle Scholar
Anselmi-Tamburini, U., Arimondi, M., Maglia, F., Spinolo, G., and Munir, Z.A., J. Am. Ceram. Soc. 81, 1765 (1998).Google Scholar
Spinolo, G. and Maglia, F., Powder Diffraction 14, 208 (1999).Google Scholar
Peralta, P., Maloy, S.A., Chu, F., Petyrovic, J.J., and Mitchell, T.E., Scripta Mater. 37, 1599 (1997).Google Scholar
Gladyshevskii, E.I., Lakh, V.I., Skolozdra, R.V., and Stasnik, B.I., Sov. Powder Metall. Metal: Ceram. 4, 278 (1964).Google Scholar
Savitskiy, E.M., Baron, V.V., Bychkova, M.I., Bakuta, S.A., and Gladyshevskiy, E.I., Izv. Akad. Nauk SSSR, Met. 2, 159 (1965).Google Scholar
Savitskiy, E.M., Baron, V.V., Evimof, Yu. V., and Gladyshevskiy, E.I., Zh. Neorg. Khim. 7, 1117 (1962).Google Scholar
Svechnikov, V.N., Kocherzhinshy, Yu.A., and Yupko, L.M., Dokl. Akad. Nauk, Ukrain, RSR 6A, 566 (1972).Google Scholar