Skip to main content Accessibility help

Self-organization of Cu–Ag during controlled severe plastic deformation at high temperatures

  • Salman N. Arshad (a1), Timothy G. Lach (a2), Julia Ivanisenko (a3), Daria Setman (a4), Pascal Bellon (a5), Shen J. Dillon (a5) and Robert S. Averback (a5)...


Cu90Ag10 alloys were subjected to severe plastic deformation at temperatures ranging from 25 to 400 °C and strain rates ranging from 0.1 to 6.25 s−1 using high-pressure torsion. The deformed samples were characterized by x-ray diffraction, transmission electron microscopy, and atom-probe tomography. A dynamic competition between shear-induced mixing and thermally activated decomposition led to the self-organization of the Cu–Ag system at length scales varying from a few atomic distances at room temperature to ≈50 nm at 400 °C. Steady-state microstructural length scales were minimally affected by varying the strain rate, although at 400 °C, the grain morphology did depend on strain-rate. Our results show that diffusion below 300 °C is dominated by nonequilibrium vacancies, and by comparison with previous Kinetic Monte Carlo simulations [D. Schwen et al., J. Mater. Res. 28, 2687–2693 (2013)], their concentration could be obtained.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Gholinia, A., Prangnell, P.B., and Markushev, M.V.: The effect of strain path on the development of deformation structures in severely deformed aluminum alloys processed by ECAE. Acta Mater. 48(5), 1115 (2000).
2. Nakashima, K., Horita, Z., Nemoto, M., and Langdon, T.G.: Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Mater. 46(5), 1589 (1998).
3. Tsuji, N., Saito, Y., Lee, S-H., and Minamino, Y.: ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 5(5), 338 (2003).
4. Valiev, R.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3(8), 511 (2004).
5. Bachmaier, A., Kerber, M., Setman, D., and Pippan, R.: The formation of supersaturated solid solutions in Fe–Cu alloys deformed by high-pressure torsion. Acta Mater. 60(3), 860 (2012).
6. Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55(12), 4041 (2007).
7. Huang, B.L., Perez, R.J., Lavernia, E.J., and Luton, M.J.: Formation of supersaturated solid solutions by mechanical alloying. Nanostruct. Mater. 7(1–2), 67 (1996).
8. Huang, J.Y., Yu, Y.D., Wu, Y.K., Li, D.X., and Ye, H.Q.: Microstructure and nanoscale composition analysis of the mechanical alloying of FeXCu100-X (X = 16, 60). Acta Mater. 45(1), 113 (1997).
9. Popov, V.V., Popova, E.N., and Stolbovskiy, A.V.: Nanostructuring Nb by various techniques of severe plastic deformation. Mater. Sci. Eng., A 539, 22 (2012).
10. Quelennec, X., Menand, A., Le Breton, J.M., Pippan, R., and Sauvage, X.: Homogeneous Cu–Fe supersaturated solid solutions prepared by severe plastic deformation. Philos. Mag. 90(9–10), 1179 (2010).
11. Schuh, C.A., Nieh, T.G., and Iwasaki, H.: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51(2), 431 (2003).
12. Schwarz, R.B. and Koch, C.C.: Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of pure metals and powders of intermetallics. Appl. Phys. Lett. 49(3), 146 (1986).
13. Klassen, T., Herr, U., and Averback, R.S.: Ballmilling of systems with positive heat of mixing: Effect of temperature in Ag-Cu. Acta Mater. 45(7), 2921 (1997).
14. Delogu, F., Pintore, M., Enzo, S., Cardellini, F., Contini, V., Montone, A., and Rosato, V.: Mechanical alloying of immiscible elements: Experimental results on Ag-Cu and Co-Cu. Philos. Mag. B 76(4), 651 (1997).
15. Gente, C., Oehring, M., and Bormann, R.: Formation of thermodynamically unstable solid solutions in the copper-cobalt system by mechanical alloying. Phys. Rev. B: Condens. Matter 48(18), 13244 (1993).
16. Ma, E. and Atzmon, M.: Phase transformations induced by mechanical alloying in binary systems. Mater. Chem. Phys. 39(4), 249 (1995).
17. Arshad, S.N., Lach, T.G., Pouryazdan, M., Hahn, H., Bellon, P., Dillon, S.J., and Averback, R.S.: Dependence of shear-induced mixing on length scale. Scr. Mater. 68(3–4), 215 (2013).
18. Pouryazdan, M., Schwen, D., Wang, D., Scherer, T., Hahn, H., Averback, R.S., and Bellon, P.: Forced chemical mixing of immiscible Ag-Cu heterointerfaces using high-pressure torsion. Phys. Rev. B: Condens. Matter Mater. Phys. 86(14), 144302 (2012).
19. Bellon, P., Averback, R.S., Odunuga, S., Li, Y., Krasnochtchekov, P., and Caro, A.: Crossover from superdiffusive to diffusive mixing in plastically deformed solids. Phys. Rev. Lett. 99(11), 110602 (2007).
20. Ashkenazy, Y., Vo, N.Q., Schwen, D., Averback, R.S., and Bellon, P.: Shear induced chemical mixing in heterogeneous systems. Acta Mater. 60(3), 984 (2012).
21. Xu, J., Herr, U., Klassen, T., and Averback, R.S.: Formation of supersaturated solid solutions in the immiscible Ni-Ag system by mechanical alloying. J. Appl. Phys. 79(8, Pt. 1), 3935 (1996).
22. Wang, M., Averback, R.S., Bellon, P., and Dillon, S.: Chemical mixing and self-organization of Nb precipitates in Cu during severe plastic deformation. Acta Mater. 62, 276 (2014).
23. Wang, M., Vo, N.Q., Campion, M., Nguyen, T.D., Setman, D., Dillon, S., Bellon, P., and Averback, R.S.: Forced atomic mixing during severe plastic deformation: Chemical interactions and kinetically driven segregation. Acta Mater. 66, 1 (2014).
24. Ma, E., He, J.H., and Schilling, P.J.: Mechanical alloying of immiscible elements: Ag-Fe contrasted with Cu-Fe. Phys. Rev. B: Condens. Matter 55(9), 5542 (1997).
25. Botcharova, E., Freudenberger, J., and Schultz, L.: Mechanical alloying of copper with niobium and molybdenum. J. Mater. Sci. 39(16–17), 5287 (2004).
26. Da Pozzo, A., Palmas, S., Vacca, A., and Delogu, F.: On the role of mechanical properties in the early stages of the mechanical alloying of Ag50Cu50 powder mixtures. Scr. Mater. 67(1), 104 (2012).
27. Cordero, Z.C. and Schuh, C.A.: Phase strength effects on chemical mixing in extensively deformed alloys. Acta Mater. 82, 123 (2015).
28. Lund, A.C. and Schuh, C.A.: Topological and chemical arrangement of binary alloys during severe deformation. J. Appl. Phys. 95(9), 4815 (2004).
29. Vo, N.Q., Odunuga, S., Bellon, P., and Averback, R.S.: Forced chemical mixing in immiscible alloys during severe plastic deformation at elevated temperatures. Acta Mater. 57(10), 3012 (2009).
30. Hohenwarter, A., Faller, M., Rashkova, B., and Pippan, R.: Influence of heat treatment on the microstructural evolution of Al-3 wt.% Cu during high-pressure torsion. Philos. Mag. Lett. 94(6), 342 (2014).
31. Sauvage, X., Enikeev, N., Valiev, R., Nasedkina, Y., and Murashkin, M.: Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al-Mg alloy. Acta Mater. 72, 125 (2014).
32. Straumal, B.B., Gornakova, A.S., Fabrichnaya, O.B., Kriegel, M.J., Mazilkin, A.A., Baretzky, B., Gusak, A.M., and Dobatkin, S.V.: Effective temperature of high pressure torsion in Zr-Nb alloys. High Temp. Mater. Processes (Berlin, Ger.) 31(4–5), 339 (2012).
33. Straumal, B.B., Protasova, S.G., Mazilkin, A.A., Kogtenkova, O.A., Kurmanaeva, L., Baretzky, B., Schutz, G., Korneva, A., and Zieba, P.: SPD-induced changes of structure and magnetic properties in the Cu-Co alloys. Mater. Lett. 98, 217 (2013).
34. Tugcu, K., Sha, G., Liao, X.Z., Trimby, P., Xia, J.H., Murashkin, M.Y., Xie, Y., Valiev, R.Z., and Ringer, S.P.: Enhanced grain refinement of an Al-Mg-Si alloy by high-pressure torsion processing at 100 °C. Mater. Sci. Eng., A 552, 415 (2012).
35. Zhilyaev, A.P., Sergeev, S.N., and Langdon, T.G.: Electron backscatter diffraction (EBSD) microstructure evolution in HPT copper annealed at a low temperature. J. Mater. Res. Technol. (2014). Ahead of print.
36. Ren, F., Arshad, S.N., Bellon, P., Averback, R.S., Pouryazdan, M., and Hahn, H.: Sliding wear-induced chemical nanolayering in Cu-Ag, and its implications for high wear resistance. Acta Mater. 72, 148 (2014).
37. Tian, Y.Z., Wu, S.D., Zhang, Z.F., Figueiredo, R.B., Gao, N., and Langdon, T.G.: Comparison of microstructures and mechanical properties of a Cu-Ag alloy processed using different severe plastic deformation modes. Mater. Sci. Eng., A 528(13–14), 4331 (2011).
38. Tian, Y.Z., Zhang, Z.F., and Langdon, T.G.: Achieving homogeneity in a two-phase Cu-Ag composite during high-pressure torsion. J. Mater. Sci. 48(13), 4606 (2013).
39. Tian, Y.Z., Li, J.J., Zhang, P., Wu, S.D., Zhang, Z.F., Kawasaki, M., and Langdon, T.G.: Microstructures, strengthening mechanisms and fracture behavior of Cu-Ag alloys processed by high-pressure torsion. Acta Mater. 60(1), 269 (2012).
40. Tian, Y.Z., Wu, S.D., Zhang, Z.F., Figueiredo, R.B., Gao, N., and Langdon, T.G.: Microstructural evolution and mechanical properties of a two-phase Cu-Ag alloy processed by high-pressure torsion to ultrahigh strains. Acta Mater. 59(7), 2783 (2011).
41. Saito, Y., Utsunomiya, H., Tsuji, N., and Sakai, T.: Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mater. 47(2), 579 (1999).
42. Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., and Lowe, T.C.: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17(1), 5 (2002).
43. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46(1–2), 1 (2000).
44. Zghal, S., Twesten, R., Wu, F., and Bellon, P.: Electron microscopy nanoscale characterization of ball milled Cu-Ag powders. Part II: Nanocomposites synthesized by elevated temperature milling or annealing. Acta Mater. 50(19), 4711 (2002).
45. Wu, F., Isheim, D., Bellon, P., and Seidman, D.N.: Nanocomposites stabilized by elevated-temperature ball milling of Ag50Cu50 powders: An atom probe tomographic study. Acta Mater. 54(10), 2605 (2006).
46. Odunuga, S., Li, Y., Krasnochtchekov, P., Bellon, P., and Averback, R.S.: Forced chemical mixing in alloys driven by plastic deformation. Phys. Rev. Lett. 95(4), 045901 (2005).
47. Schwen, D., Wang, M., Averback, R.S., and Bellon, P.: Compositional patterning in immiscible alloys subjected to severe plastic deformation. J. Mater. Res. 28(19), 2687 (2013).
48. Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53(6), 893 (2008).
49. Pereira, P.H.R., Figueiredo, R.B., Huang, Y., Cetlin, P.R., and Langdon, T.G.: Modeling the temperature rise in high-pressure torsion. Mater. Sci. Eng., A 593, 185 (2014).
50. Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103 (2000).
51. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549 (1905).
52. Martin, G. and Bellon, P.: Driven alloys. Solid State Phys. 50, 189 (1997).
53. Hellman, O.C., Vandenbroucke, J.A., Rusing, J., Isheim, D., and Seidman, D.N.: Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6(5), 437 (2000).
54. Patterson, A.L.: The Scherrer formula for X-Ray particle size determination. Phys. Rev. 56(10), 978 (1939).
55. Hilliard, J.E.: Conversion of intercept density to grain size. Met. Prog. 85(5), 99 (1964).
56. Linde, R.K.: Lattice parameters of metastable Ag-Cu alloys. J. Appl. Phys. 37(2), 934 (1966).
57. Enrique, R.A. and Bellon, P.: Compositional patterning in systems driven by competing dynamics of different length scale. Phys. Rev. Lett. 84(13), 2885 (2000).
58. Militzer, M., Sun, W.P., and Jonas, J.J.: Modeling the effect of deformation-induced vacancies on segregation and precipitation. Acta Metall. Mater. 42(1), 133 (1994).
59. Song, S.H., Chen, X.M., and Weng, L.Q.: Solute diffusion during high-temperature plastic deformation in alloys. Mater. Sci. Eng., A 528(24), 7196 (2011).
60. Mecking, H. and Estrin, Y.: The effect of vacancy generation on plastic deformation. Scr. Metall. 14(7), 815 (1980).
61. Chen, Y., Bibole, M., Le Hazif, R., and Martin, G.: Ball-milling-induced amorphization in NixZry compounds: A parametric study. Phys. Rev. B 48(1), 14 (1993).
62. The equilibrium vacancy concentration, like the vacancy jump frequency, is influenced by interphase boundaries, however, it has been calculated in the simulations.
63. Vo, N.Q., Schaefer, J., Averback, R.S., Albe, K., Ashkenazy, Y., and Bellon, P.: Reaching theoretical strengths in nanocrystalline Cu by grain boundary doping. Scr. Mater. 65(8), 660 (2011).
64. Galindo-Nava, E.I. and Rivera-Diaz-del-Castillo, P.E.J.: Thermostatistical modelling of hot deformation in FCC metals. Int. J. Plast. 47, 202 (2013).
65. Hong, S.I. and Kwon, H.J.: Superplasticicity of Cu–16 at.% Ag microcomposites. J. Mater. Res. 16(06), 1822 (2001).


Self-organization of Cu–Ag during controlled severe plastic deformation at high temperatures

  • Salman N. Arshad (a1), Timothy G. Lach (a2), Julia Ivanisenko (a3), Daria Setman (a4), Pascal Bellon (a5), Shen J. Dillon (a5) and Robert S. Averback (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed