Skip to main content Accessibility help
×
Home

Self-assembly synthesis and mechanism investigation of branched core–shell hybrids of tin nanowires and carbon nanotubes

  • Ruying Li (a1), Yong Zhang (a1) and Xueliang Sun (a1)

Abstract

Branched core–shell hybrids of tin nanowires and carbon nanotubes have been successfully obtained on silicon substrate via a self-assembly process by chemical vapor deposition. Structure characterization unveiled that the nanostructures are the hybrids of branched single-crystalline β-Sn nanowires coated with amorphous carbon nanotubes. Detailed investigation demonstrates that the amount of introduced ethylene plays a crucial role in triggering the morphology change of the product from freestanding core–shell hybrids to branched hybrids accompanying with a thickness and surface morphology change of carbon shell. Architecture of the branched core–shell hybrids has been categorized and the mechanism has been discussed. This kind of branched hybrids may find great potential applications in building multipath nanoelectronic components, lithium-ion battery electrodes, and enhanced superconducting nanodevices as well.

Copyright

Corresponding author

b)Address all correspondence to this author. e-mail: xsun@eng.uwo.ca

References

Hide All
1.Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H.: Opening carbon nanotubes with oxygen and implications for filling. Nature 362(6420), 522 (1993).
2.Pradhan, B.K., Kyotani, T., and Tomita, A.: Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes. Chem. Commun. 14, 1317 (1999).
3.He, Z.B., Lee, C.S., Maurice, J.L., Pribat, D., Haghi-Ashtiani, P., and Cojocaru, C.S.: Vertically oriented nickel nanorod/carbon nanofiber core/shell structures synthesized by plasma-enhanced chemical vapor deposition. Carbon 49(14), 4710 (2011).
4.Gao, Y.H. and Bando, Y.: Nanotechnology: Carbon nanothermometer containing gallium. Nature 415, 599 (2002).
5.Dorozhkin, P.S., Tovstonog, S.V., Golberg, D., Zhan, J.H., Ishikawa, Y., Shiozawa, M., Nakanishi, H., Nakata, K., and Bando, Y.: A Liquid-Ga-filled carbon nanotube: A miniaturized temperature sensor and electrical switch. Small 1(11), 1088 (2005).
6.Bao, J.C., Tie, C.Y., Xu, Z., Suo, Z.Y., Zhou, Q.F., and Hong, J.M.: A facile method for creating an array of metal-filled carbon nanotubes. Adv.Mater. 14(20), 1483 (2002).
7.Che, R.C., Peng, L.M., Duan, X.F., Chen, Q., and Liang, X.L.: Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401 (2004).
8.Svensson, K., Olin, H., and Olsson, E.: Nanopipettes for metal transport. Phys. Rev. Lett. 93(14), 1459011 (2004).
9.Toh, S., Kaneko, K., Hayashi, Y., Tokunaga, T., and Moon, W.J.: Microstructure of metal-filled carbon nanotubes. J. Electron Microsc. 53(2), 149 (2004).
10.Ma, D.K., Zhang, M., Xi, G.C., Zhang, J.H., and Qian, Y.T.: Fabrication and characterization of ultralong Ag/C nanocables, carbonaceous nanotubes, and chainlike beta-Ag2Se nanorods inside carbonaceous nanotubes. Inorg. Chem. 45(12), 4845 (2006).
11.Dong, L.X., Tao, X.Y., Zhang, L., Zhang, X.B., and Nelson, B.J.: Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett., 7(1), 58 (2007).
12.Golberg, D., Costa, P.M.F.J., Mitome, M., Hampel, S., Haase, D., Mueller, C., Leonhardt, A., and Bando, Y.: Copper-filled carbon nanotubes: Rheostatlike behavior and femtogram copper mass transport. Adv. Mater. 19(15), 1937 (2007).
13.Zhao, Y.X., Zhang, Y., Li, Y.P., and Yan, Z.F.: A flexible chemical vapor deposition method to synthesize copper@carbon core–shell structured nanowires and the study of their structural electrical properties. New J. Chem. 36(5), 1161 (2012).
14.Guan, H., Wang, X., Chen, S.M., Bando, Y., and Golberg, D.: Coaxial Cu-Si@C array electrodes for high-performance lithium ion batteries. Chem. Commun. 47(44), 12098 (2011).
15.Elías, A.L., Rodríguez-Manzo, J.A., McCartney, M.R., Golberg, D., Zamudio, A., Baltazar, S.E., López-Urías, F., Muñoz-Sandoval, E., Gu, L., Tang, C.C., Smith, D.J., Bando, Y., Terrones, H., Terrones, M.: Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes. Nano Lett. 5(3), 467 (2005).
16.Lv, R.T., Cao, A.Y., Kang, F.Y., Wang, W.X., Wei, J.Q., Gu, J.L., Wang, K.L., and Wu, D.H.: Single-crystalline permalloy nanowires in carbon nanotubes: Enhanced encapsulation and magnetization. J. Phys. Chem. C 111(30), 11475 (2007).
17.Barsoum, M.W., Hoffman, E.N., Doherty, R.D., Gupta, S., and Zavaliangos, A.: Driving force and mechanism for spontaneous metal whisker formation. Phys. Rev. Lett. 93(20), 206104 (2004).
18.Chen, Y., Cui, X., Zhang, K., Pan, D., Zhang, S., Wang, B., and Hou, J.G.: Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. Chem. Phys. Lett. 369(1–2), 16 (2003).
19.Ying, Z., Wan, Q., Song, Z.T., and Feng, S.L.: SnO2 nanowhiskers and their ethanol sensing characteristics. Nanotechnology 15(11), 1682 (2004).
20.Tian, M.L., Wang, J.G., Snyder, J., Kurtz, J., Liu, Y., Schiffer, P., Mallouk, T.E., and Chan, M.H.W.: Synthesis and characterization of superconducting single-crystal Sn nanowires. Appl. Phys. Lett. 83, 1620 (2003).
21.Hsu, Y.J. and Lu, S.Y.: Vapor-solid growth of Sn nanowires: Growth mechanism and superconductivity. J. Phys. Chem. B 109(10), 4398 (2005).
22.Zou, Y.Q. and Wang, Y.: Sn@CNT nanostructures Rooted in graphene with high and fast Li-storage capacities. ACS Nano 5(10), 8108 (2011).
23.Lee, H. and Cho, J.: Sn78Ge22@carbon core-shell nanowires as fast and high-capacity lithium storage media. Nano Lett. 7(9), 2638 (2007).
24.Cho, J.: Control of the carbon shell thickness in Sn70Ge30@carbon core-shell nanoparticles using alkyl terminators: Its implication for high-capacity lithium battery anode materials. Electrochim. Acta 54(2), 461 (2008).
25.Kasai, S., Nakamura, T., and Shiratori, Y.: Multipath-switching device utilizing a GaAs-based multiterminal nanowire junction with size-controlled dual Schottky wrap gates. Appl. Phys. Lett. 90, 2035041 (2007).
26.Park, W.I., Kim, J.S., Yi, G.C., and Lee, H.J.: ZnO nanorod logic circuits. Adv.Mater. 17(11), 13931397 (2005).
27.Suyatin, D.B., Sun, J., Fuhrer, A., Wallin, D., Fröberg, L.E., Karlsson, L.S., Maximov, I., Wallenberg, L.R., Samuelson, L., and Xu, H.Q.: Electrical properties of self-assembled branched InAs nanowire junctions. Nano Lett. 8(4), 1100 (2008).
28.Liu, X.H., Lin, Y.J., Zhou, S., Sheehan, S., and Wang, D.W.: Complex nanostructures: Synthesis and energetic applications. Energies 3, 285 (2010).
29.Cui, Q.Z., Gao, F., Mukherjee, S., and Gu, Z.Y.: Joining and interconnect formation of nanowires and carbon nanotubes for nanoelectronics and nanosystems. Small 5(11), 1246 (2009).
30.Jun, Y.W., Choi, J.S., and Cheon, J.W.: Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 45, 3414 (2006).
31.Dick, K.A., Deppert, K., Larsson, M.W., Mårtensson, T., Seifert, W., Wallenberg, L.R., and Samuelson, L.: Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3, 380 (2004).

Keywords

Self-assembly synthesis and mechanism investigation of branched core–shell hybrids of tin nanowires and carbon nanotubes

  • Ruying Li (a1), Yong Zhang (a1) and Xueliang Sun (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed