Skip to main content Accessibility help
×
Home

Selective-area growth of III-V nanowires and their applications

  • Katsuhiro Tomioka (a1), Keitaro Ikejiri (a2), Tomotaka Tanaka (a2), Junichi Motohisa (a2), Shinjiroh Hara (a2), Kenji Hiruma (a2) and Takashi Fukui (a2)...

Abstract

We review the position-controlled growth of III-V nanowires (NWs) by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE). This epitaxial technique enables the positioning of the vertical NWs on (111) oriented surfaces with lithographic techniques. Core-shell structures have also been achieved by controlling the growth mode during SA-MOVPE. The core-shell III-V NW-based devices such as light-emitting diodes, photovoltaic cells, and vertical surrounding-gate transistors are discussed in this article. Nanometer-scale growth also enabled the integration of III-V NWs on Si regardless of lattice mismatches. These demonstrated achievements should have broad applications in laser diodes, photodiodes, and high-electron mobility transistors with functionality on Si not made possible with conventional Si-CMOS techniques.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: tomioka@rciqe.hokudai.ac.jp

Footnotes

Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes

References

Hide All
1.Hiruma, K., Yazawa, M., Katsuyama, T., Ogawa, K., Haraguchi, K., Koguchi, M., and Kakibayashi, H.: Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447 (1995).
2.Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.H., and Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).
3.Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).
4.Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., and Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617 (2002).
5.Lauhon, L.J., Gudiksen, M.S., Wang, D., and Lieber, C.M.: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57 (2002).
6.Johnson, J.C., Choi, H.-J., Knutsen, K.P., Schaller, R.D., Yang, P., and Saykally, R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106 (2002).
7.Wagner, R.S. and Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).
8.Hiruma, K., Katsuyama, T., Ogawa, K., Koguchi, M., Kakibayashi, H., and Morgan, G.P.: Quantum size microcrystals grown using organometallic vapor phase epitaxy. Appl. Phys. Lett. 59, 431 (1991).
9.Björk, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallengerg, L.R., and Samuelson, L.: One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058 (2002).
10.Yan, Z.X. and Milnes, A.G.: Deep level transient spectroscopy of silver and gold levels in LEC grown gallium arsenide. J. Electrochem. Soc. 129, 1353 (1982).
11.Morral, A.F.i., Colombo, C., Abstreiter, G., Arbiol, J., and Morante, J.R.: Nucleation mechanism of gallium-assisted molecular-beam-epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 92, 063112 (2008).
12.Mandl, B., Stangl, J., Hilner, E., Zakharov, A.A., Hilletich, K., Dey, A.W., Samuelson, L., Bauer, G., Deppert, K., and Mikkelsen, A.: Growth mechanism of self-catalyzed group III-V nanowires. Nano Lett. 10, 4443 (2010).
13.Joyce, B.D. and Baldrey, J.A.: Selective epitaxial deposition of silicon. Nature 195, 485 (1962).
14.Tausch, F.W. and Lapierre, A.G.: A novel crystal growth phenomenon: Single crystal GaAs overgrowth onto silicon dioxide. J. Electrochem. Soc. 112, 706 (1965).
15.Rai-Choudhury, P.: Epitaxial gallium arsenide from trimethyl gallium and arsine. J. Electrochem. Soc. 116, 1745 (1969).
16.Jones, S.H. and Lau, K.M.: Selective area growth of high quality GaAs by OMCVD using native oxide masks. J. Electrochem. Soc. 134, 3149 (1987).
17.Fukui, T. and Ando, S.: New GaAs quantum wires on <111>B facets by selective MOCVD. Electron. Lett. 25, 410 (1989).
18.Fukui, T., Ando, S., Tokura, Y., and Toriyama, T.: GaAs tetrahedral quantum dot structure fabricated using selective area metalorganic chemical vapor deposition. Appl. Phys. Lett. 58, 2018 (1991).
19.Kumakura, K., Nakakoshi, K., Motohisa, J., Fukui, T., and Hasegawa, H.: Novel formation method of quantum dot structures by self-limited selective area metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 34, 4387 (1995).
20.Nakajima, F., Miyoshi, Y., Motohisa, J., and Fukui, T.: Single-electron AND/NAND logic circuits based on a self-organized dot network. Appl. Phys. Lett. 83, 2680 (2003).
21.Miyoshi, Y., Nakajima, F., Motohisa, J., and Fukui, T.: A 1 bit binary-decision-diagram adder circuit using single-electron transistors made by selective-area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 87, 033501 (2005).
22.Ando, S., Kobayashi, N., and Ando, H.: Selective area metalorganic chemical vapor deposition growth for hexagonal facet lasers. J. Cryst. Growth 145, 302 (1994).
23.Hamano, T., Hirayama, H., and Aoyagi, Y.: New technique for fabrication of two-dimensional photonic bandgap crystals by selective epitaxy. Jpn. J. Appl. Phys. 36, L286 (1997).
24.Motohisa, J., Noborisaka, J., Takeda, J., Inari, M., and Fukui, T.: Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates. J. Cryst. Growth 272, 180 (2004).
25.Noborisaka, J., Motohisa, J., and Fukui, T.: Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 86, 213102 (2005).
26.Ikejiri, K., Noborisaka, J., Hara, S., Motohisa, J., and Fukui, T.: Mechanism of catalyst-free growth of GaAs nanowires by selective area MOVPE. J. Cryst. Growth 298, 616 (2007).
27.Ikejiri, K., Sato, T., Yoshida, H., Hiruma, K., Motohisa, J., Hara, S., and Fukui, T.: Growth characteristics of GaAs nanowires obtained by selective area metal-organic vapour-phase epitaxy. Nanotechnology 19, 265604 (2008).
28.Mohan, P., Motohisa, J., and Fukui, T.: Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903 (2005).
29.Kitauchi, Y., Kobayashi, Y., Tomioka, K., Hara, S., Hiruma, K., Fukui, T., and Motohisa, J.: Structural transition in indium phosphide nanowires. Nano Lett. 10, 1699 (2010).
30.Tomioka, K., Mohan, P., Noborisaka, J., Hara, S., Motohisa, J., and Fukui, T.: Growth of highly uniform InAs nanowire arrays by selective-area MOVPE. J. Cryst. Growth 298, 644 (2007).
31.Akabori, M., Sladek, K., Hardtdegen, H., Schäoers, Th., and Grützmacher, D.: Influence of growth temperature on the selective area MOVPE of InAs nanowries on GaAs(111)B using N2 carrier gas. J. Cryst. Growth 311, 3813 (2009).
32.Akabori, M., Takeda, J., Motohisa, J., and Fukui, T.: InGaAs nano-pillar array formation on partially masked InP(111)B by selective area metal-organic vapour phase epitaxial growth for two-dimensional photonic crystal application. Nanotechnology 14, 1071 (2003).
33.Sato, T., Motohisa, J., Noborisaka, J., Hara, S., and Fukui, T.: Growth of InGaAs nanowires by selective-area metalorganic vapor phase epitaxy. J. Cryst. Growth 310, 2359 (2008).
34.Sato, T., Kobayashi, Y., Motohisa, J., Hara, S., and Fukui, T.: SA-MOVPE of InGaAs nanowires and their compositions studied by micro-PL measurement. J. Cryst. Growth 310, 5111 (2008).
35.Yoshimura, M., Tomioka, K., Hiruma, K., Hara, S., Motohisa, J., and Fukui, T.: Growth and characterization of InGaAs nanowires formed on GaAs(111)B by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 49, 04DH08 (2010).
36.Fujisawa, S., Sato, T., Hara, S., Motohisa, J., Hiruma, K., and Fukui, T.: Growth and characterization of a GaAs quantum well buried in GaAsP/GaAs vertical heterostructure nanowires by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 50, 04DH03 (2011).
37.Sekiguchi, H., Kishino, K., and Kikuchi, A.: Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 96, 231104 (2010).
38.Kim, Y.-J., Lee, C.-H., Hong, Y.J., Yi, G.-C., Kim, S.S., and Cheong, H.: Controlled selective growth of ZnO nanorod and microrod arrays on Si substrate by a wet chemical method. Appl. Phys. Lett. 89, 163128 (2006).
39.Noborisaka, J., Motohisa, J., Hara, S., and Fukui, T.: Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 87, 093109 (2005).
40.Mohan, P., Motohisa, J., and Fukui, T.: Realization of conductive InAs nanotubes based on lattice-mismatched InP/InAs core-shell nanowires. Appl. Phys. Lett. 88, 013110 (2006).
41.Hua, B., Motohisa, J., Kobayashi, Y., Hara, S., and Fukui, T.: Single GaAs/GaAsP coaxial core-shell nanowire laser. Nano Lett. 9, 112 (2009).
42.Mohan, P., Motohisa, J., and Fukui, T.: Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 88, 133105 (2006).
43.Yang, L., Motohisa, J., Takeda, J., Tomioka, K., and Fukui, T.: Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence. Nanotechnology 18, 105302 (2007).
44.Shapiro, J.N., Lin, A., Wong, P.S., Scofield, A.C., Tu, C., Senanayake, P.N., Mariani, G., Liang, B.L., and Huffaker, D.L.: InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy. Appl. Phys. Lett. 97, 243102 (2010).
45.Sasakura, H., Humano, K., Suemune, I., Motohisa, J., Kobayashi, Y., van Kouwen, M., Tomioka, K., Fukui, T., Akopian, N., and Zwiller, V.: Exciton coherence in clean single InP/InAsP/InP nanowire quantum dots emitting in infra-red measured by Fourier spectroscopy. J. Phys. Conf. Ser. 193, 012132 (2009).
46.Hayashida, A., Sato, T., Hara, S., Motohisa, J., Hiruma, K., and Fukui, T.: Fabrication and characterization of GaAs quantum well buried in AlGaAs/GaAs heterostructure nanowires. J. Cryst. Growth 312, 3592 (2010).
47.Shi, W.S., Zheng, Y.F., Wang, N., Lee, C.S., and Lee, S.T.: Oxide-assisted growth and optical characterization of gallium-arsenide nanowires. Appl. Phys. Lett. 78, 3304 (2001).
48.Dobrusin, R.L., Kotechy, R., and Shlosman, S.: Wulff Construction: A Global Shape from Local Interactions. (American Mathematical Society, Providence, 1993).
49.Li, C.H., Sun, Y., Law, D.C., Visbeck, S.B., and Hicks, R.F.: Reconstructions of the InP(111)A surface. Phys. Rev. B 68, 085320 (2003).
50.Biegelsen, D.K., Bringans, R.D., Northrup, J.E., and Swartz, L.-E.: Reconstructions of GaAs(-1-1-1) surfaces observed by scanning tunneling microscopy. Phys. Rev. Lett. 65, 452 (1990).
51.Tomioka, K., Motohisa, J., Hara, S., and Fukui, T.: Control of InAs nanowire growth directions on Si. Nano Lett. 8, 3475 (2008).
52.Tomioka, K., Kobayashi, Y., Motohisa, J., Hara, S., and Fukui, T.: Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate. Nanotechnology 20, 145302 (2009).
53.Tomioka, K., Tanaka, T., Hara, S., Hiruma, K., and Fukui, T.: III-V nanowires on Si substrate: Selective-area growth and device applications. IEEE J. Select. Top. Quantum Elec. Early access (2011).
54.Hertenberger, S., Rudolph, D., Bichler, M., Findley, J.J., Abstreiter, G., and Koblmüller, G.: Growth kinetics in position-controlled and catalyst-free InAs nanowrie arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys. 108, 114316 (2010).
55.Sladek, K., Klinger, V., Wensorra, J., Akabori, M., Hardtdegen, H., and Grützmacher, D.: MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires. J. Cryst. Growth 312, 65 (2010).
56.Skromme, B.J., Sandroff, C.J., Yablonovitch, E., and Gmitter, T.: Effects of passivation ionic films on the photoluminesnce properties of GaAs. Appl. Phys. Lett. 51, 2022 (1987).
57.Borgström, M.T., Zwiller, V., Muller, E., and Imamoglu, A.: Optically bright quantum dots in single nanowire. Nano Lett. 5, 1439 (2005).
58.Dorenbos, S.N., Sasakura, H., van Kouwen, M.P., Akopian, N., Adachi, S., Namekata, N., Jo, M., Motohisa, J., Kobayashi, Y., Tomioka, K., Fukui, T., Inoue, S., Kumano, H., Natarajan, C.M., Hadfield, R.H., Zijlstra, T., Klapwijk, T.M., and Suemune, I.: Position controlled nanowires for infrared single photon emission. Appl. Phys. Lett. 97, 171106 (2010).
59.Goto, H., Nosaki, K., Tomioka, K., Hara, S., Hiruma, K., Motohisa, J., and Fukui, T.: Growth of core-shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Exp. 2, 035004 (2009).
60.Kikuchi, A., Kawai, M., Tada, M., and Kishino, K.: InGaN/GaN multiple quantum disks nanocolumn light-emitting diodes grown on (111) Si substrate. Jpn. J. Appl. Phys. 43, L1524 (2004).
61.Qian, F., Gradečak, S., Li, Y., Wen, C.-Y., and Lieber, C.M.: Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287 (2005).
62.Tomioka, K., Motohisa, J., Hara, S., Hiruma, K., and Fukui, T.: GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 10, 1639 (2010).
63.Svensson, C.P.T., Martensson, T., Tragardh, J., Larsson, C., Rask, M., Hessman, D., Samuelson, L., and Ohlsson, J.: Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechology 19, 305201 (2008).
64.Chuang, L.C., Sedgwick, F.G., Chen, R., Ko, W.S., Moewe, M., Ng, K.W., Tran, T.T., and C-Hasnain, C.: GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate. Nano Lett. 11, 385 (2011).
65.An, S.J., Chae, J.H., Yi, G.-C., and Park, G.H.: Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 92, 121108 (2008).
66.Lee, C.-H., Yoo, J., Hong, Y.J., Cho, J., Kim, Y.-J., Jeon, S.-R., Baek, J.H., and Yi, G.-C.: GaN/In1-xGaxN/GaN/ZnO nanoarchitecture light emitting diode microarrays. Appl. Phys. Lett. 94, 213101 (2009).
67.Lai, E., Kim, W., and Yang, P.: Vertical nanowire array-based light emitting diodes. Nano Res. 1, 123 (2008).
68.Lin, H.-W., Lu, Y.-J., Chen, H.-Y., Lee, H.-M., and Gwo, S.: InGaN/GaN nanorod array white light-emitting diode. Appl. Phys. Lett. 97, 073101 (2010).
69.Schubert, E.F.: Light-Emitting Diodes, 2nd ed (Cambridge University Press, Cambridge, 2006).
70.Ray, S.K., Groom, M., Liu, H.Y., Hopkinson, M., and Hogg, R.A.: Broad-band superluminescent light emitting diodes incorporating quantum dots in compositionally modulated quantum wells. Jpn. J. Appl. Phys. 45, 2542 (2006).
71.Hu, L. and Chen, G.: Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249 (2007).
72.Kayes, B.M., Atwater, H.A., and Lewis, N.S.: Comparison of the device physics principles of planar and radial p-n junction nanorod solar cell. J. Appl. Phys. 97, 114302 (2005).
73.Kandala, A., Betti, T., and Morral, A.F.I.: General theoretical considerations on nanowire solar cell designs. Phys. Status Solidi A 206, 173 (2009).
74.Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., and Lieber, C.M.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007).
75.Kempa, T.J., Tian, B., Kim, D.R., Hu, J., Zheng, X., and Lieber, C.M.: Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8, 3456 (2008).
76.Keizenberg, M.D., Turner-Evans, D.B., Kayes, B.M., Filler, M.A., Putnam, M.C., Lewis, N.S., and Atwater, H.A.: Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8, 710 (2008).
77.Colombo, C., Heiß, M., Grätzel, M., and Morral, A.F.I.: Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94, 173108 (2009).
78.Wei, W., Bao, X.-Y., Soci, C., Ding, Y., Wang, Z.-L., and Wang, D.: Direct heteroepitaxy of vertical InAs nanowires on Si substrate for broad band photovoltaics and photodetection. Nano Lett. 9, 2926 (2009).
79.Mariani, G., Laghumavarapu, R.B., de Villers, B.T., Shapiro, J., Senanayake, P., Lin, A., Schwartz, B.J., and Huffaker, D.L.: Hybrid conjugated polymer solar cells using patterned GaAs nanopillars. Appl. Phys. Lett. 97, 013107 (2010).
80.Sugo, M., Yamamoto, A., Yamaguchi, M., and Uemura, C.: High-efficiency InP solar cells with n+-p-p+ structure grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 24, 1243 (1985).
81.Xiang, J., Hu, Y., Wu, Y., Yan, H., and Lieber, C.M.: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489 (2006).
82.Zhang, L., Tu, R., and Dai, H.: Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors. Nano Lett. 6, 2785 (2006).
83.Noborisaka, J., Sato, T., Motohisa, J., Hara, S., Tomioka, K., and Fukui, T.: Electrical characterizations of InGaAs nanowire-top-gate field-effect transistors by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 46, 7562 (2007).
84.Jiang, X., Xiong, Q., Nam, S., Qian, F., Li, Y., and Lieber, C.M.: InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3214 (2007).
85.Do, Q.-T., Blekker, K., Regolin, I., Prost, W., and Tegude, F.J.: High transconductance MISFET with a single InAs nanowire channel. IEEE Elec. Dev. Lett. 28, 682 (2007).
86.Yeom, D., Keem, K., Kang, J., Jeong, D-Y., Yoon, C., Kim, D., and Kim, S.: NOT and NAND logic circuits composed of top-gate ZnO nanowire field-effect transistors with high-k Al2O3 gate layers. Nanotechnology 19, 265502 (2008).
87.Ng, H.T., Han, J., Yamada, T., Nguyen, P., Chen, Y.P., and Meyyappan, M.: Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247 (2004).
88.Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W., and Gösele, U.: Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2, 85 (2006).
89.Rehnstedt, C., Mårtensson, T., Thelander, C., Samuelson, L., and Wernersson, L.-E.: Vertical InAs nanowire wrap gate transistors on Si substrate. IEEE Trans. Electron. Devices 55, 3037 (2008).
90.Björk, M.T., Hayden, O., Schmid, H., Riel, H., and Riess, W.: Vertical surround-gate silicon nanowire impact ionization field-effect transistors. Appl. Phys. Lett. 90, 142110 (2007).
91.Tanaka, T., Tomioka, K., Hara, S., Motohisa, J., Sano, E., and Fukui, T.: Vertical surrounding gate transistors using single InAs nanowires grown on Si substrate. Appl. Phys. Exp. 3, 025003 (2010).
92.Radosavljevic, M., Dewey, G., Fanstenau, J.M., Kavalieros, J., Kotlayer, R., Chu-Kung, B., Liu, W.K., Lubyshev, D., Metz, M., Millard, K., Mukherjee, N., Pan, L., Pillarisetty, R., Rachmady, W., Shah, U., and Chau, R.: Non-planar, multi-gate InGaAs Quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic application. Abstract in 2010 Int. Elec. Dev. Meeting (IEDM) p. 6.1.1 (2010).
93.Björk, M.T., Knoch, J., Schmid, H., Riel, H., and Riess, W.: Silicon nanowire tunneling field-effect transistors. Appl. Phys. Lett. 92, 193504 (2008).
94.Kwon, S.H., Kang, J.H., Seassal, C., Kim, S.K., Regreny, P., Lee, Y.H., Lieber, C.M., and Park, H.G.: Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679 (2010).
95.Im, H., Lindquist, N.C., Lesuffleur, A., and Oh, S.H.: Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. ACS Nano. 4, 947 (2010).
96.Björk, M.T., Schmid, H., Bessire, C.D., Moselundm, K. E. Ghoneim, H., Karg, S., Lörtscher, E., and Riel, H.: Si-InAs heterojunction Esaki tunnel diodes with high current densities. Appl. Phys. Lett. 97, 163501 (2010).
97.Tomioka, K. and Fukui, T.: Tunnel field-effect transistor using InAs nanowire/Si heterojunction. Appl. Phys. Lett. 98, 083114 (2011).

Keywords

Selective-area growth of III-V nanowires and their applications

  • Katsuhiro Tomioka (a1), Keitaro Ikejiri (a2), Tomotaka Tanaka (a2), Junichi Motohisa (a2), Shinjiroh Hara (a2), Kenji Hiruma (a2) and Takashi Fukui (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed