Skip to main content Accessibility help
×
Home

Selective synthesis of nanosized TiO2 by hydrothermal route: Characterization, structure property relation, and photochemical application

  • K. Madhusudan Reddy (a1), Debanjan Guin (a1), Sunkara V. Manorama (a1) and A. Ramachandra Reddy (a2)

Abstract

By variation of reaction temperature and time during the hydrothermal synthesis process, TiO2 nanoparticles in anatase, rutile, and mixture of rutile-anatase phases are formed without adding any mineralizer. Differential thermal analysis studies indicate the rutile phase crystallization at a comparatively lower temperature and a low weight loss. The material synthesized by hydrothermal reaction required no post-calcination for the crystallization. Transmission electron microscopy, selected-area diffraction, Brunauer–Emmett–Teller, and x-ray diffreaction studies confirmed the compositions to be anatase and rutile with the particle size ranging from 5 to 25 nm with surface area as high as 260 m2/g for the anatase and 65 m2/g for rutile. The prepared nanoparticles exhibited a blue shift of the absorption edge in the ultraviolet-visible spectrum greater than 10 nm. The particles with average size around 5 nm showed two band edges in the absorption spectra attributed to two different particle sizes. Simple photocatalytic reactions were tried to demonstrate the photochemical activity of the synthesized material. The synthesized nanoparticles exhibited an ultraviolet radiation simultaneous photoreduction of Cr(VI) to Cr(III) and oxidation of formic acid into carbon dioxide and water.

Copyright

Corresponding author

a) Address all correspondence to this author.e-mail: manorama@iict.res.in

References

Hide All
1.O’Regan, B. andGrätzel, M.: A low-cost, high efficiency solar cell based upon dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).
2.Perkins, C.L. andHenderson, M.A.: Photodesorption and trapping of molecular oxygen at the TiO2(110)-water ice interface. J. Phys. Chem. B 105, 3856 (2001).
3.Yen, Y.C., Tseug, T.T. andChang, D.A.: Electrical properties of porous titania ceramic humidity sensor. J. Am. Ceram. Soc. 72, 1472 (1989).
4.Matsumoto, T., Murakami, Y. and Takasu, Y.: Photochromism of titanium oxide gels prepared by the salt-catalytic sol-gel process. Chem. Lett. 49, 348 (2000).
5.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. andTaga, Y.: Visible light photocatalysis in nitrogen doped titanium oxides. Science 293, 269 (2001).
6.Chemseddine, A. andBoehm, H.P.: A study of the primary step in the photochemical degradation of acetic acid and chloroacetic acids on a TiO2 photocatalyst. J. Mol. Catal. 60, 295 (1990).
7.Ovenstone, J. andYanagisawa, K.: Hydrothermal synthesis and characterization of strontium doped lanthanum manganite perovskite powders for use as a cathode material in SOFCs. Chem. Mater. 11, 2770 (1999).
8.Thiele, E.S. andFrench, R.H.: Light scattering properties of representative, morphological rutile titania nanoparticles using a finite element method. J. Am. Ceram. Soc 81[3], 469 (1998).
9.Patton, T.C.Pigment Handbook (Wiley, New York, 1973).
10.Aruna, S.T., Tirosh, S. andZaban, A.J.: Nanosize rutile particle synthesis via hydrothermal method without mineralizers. J. Mater. Chem. 10, 2388 (2000).
11.Edelson, L.H. andGlaeser, A.M.: Role of particle substructure in the sintering of monosized titania. J. Am. Ceram. Soc. 71[4], 225 (1988).
12.Chemseddine, A. and Mritz, T.: Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 2, 235 (1999).
13.Zhang, D., Gao, L. andGuo, J.: Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catal., B: Gen 26, 207 (2000).
14.Cheng, H., Ma, J., Zhao, Z. andQi, L.: Hydrothermal preparation of uniform nanosized rutile and anatase particles. Chem. Mater. 7, 663 (1995).
15.Wang, C.C. andYing, J.Y.: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 3113 (1999).
16.Yin, H., Wada, Y., Kitamura, T., Kambe, S., Murasawa, S., Mori, H., Sakata, T. andYanagida, S.: Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J. Mater. Chem. 11, 1694 (2001).
17.Kominami, H., Kato, J., Murakami, S., Kera, Y., Inoue, M. andOhtani, B.: Synthesis of titanium(IV) oxide of ultra-high photocatalytic activity: High-temperature hydrolysis of titanium alkoxides with water liberated homogeneously from solvent alcohols. J. Mol. Catal. A 144, 165 (1999).
18.Cavani, F., Foresti, E., Parrinello, F. andTriro, F.: Role of the chemistry of solutions of titanium ions in determining the structure of V/Ti/O catalysts. Appl. Catal. 38, 311 (1998).
19.Henry, M., Jolivet, J.P. andLivage, J. In Aqueous Chemistry of Metal Cations, Hydrolysis, Condensation and Complexation, edited by Reisfeld, R. and Jorgensen, C.K. (Springer-Verlag, Berlin, Germany, 1992), p. 155.
20.Bekkerman, L.I., Dobrovolskii, I.P. andIvakin, A.: Effect of the composition of Ti(IV) solutions and precipitation conditions on the structure of the solid phase. Russ. J. Inorg. Chem 21, 233 (1976).
21.Livage, J., Henry, M. andSanchez, C.: Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259 (1988).
22.Klug, H.P. andAlexander, L.E. In X-ray Diffraction Procedures (Wiley-Interscience, ;New York, 1974), p. 364.
23.Spurr, R.A. andMyers, H.: Quantity analysis of anatase-rutile mixture with an x-ray diffractomter. Anal. Chem. 29, 760 (1957).
24.Park, N.G., Schlichthorl, G., van Lagemaat, J. de, Cheong, H.M., Mascarenhas, A. andFrank, A.J.: Dye sensitized TiO2 solar cells: Structural and photochemical characterization of nanocrystalline electrodes formed from hydrolysis of TiCl4. J. Phys. Chem. 103, 3308 (1999).
25.Nilsson, T.M.J. andNiklasson, G.A.: Condensation of H2O by radiative cooling. Sol. Energy Mater. Sol. Cells 37, 93 (1995).
26.Granqvist, C. andEviksson, T. in Materials for Radiative Cooling to Low Temperatures, edited by Granqvist, C. (Pergamon Press, Oxford, U.K., 1991), p. 168.
27.Kumar, K.N.P., Keizer, K., Burggraaf, A.J., Okubo, T. andNagamoto, H.: Synthesis and textural properties of unsupported and supported rutile (TiO2) membranes. J. Mater. Chem. 3, 923 (1993).
28.Ardizzone, S., Bianchi, C.L. andVercelli, B.: Structural and morphological features of MgO powders: The key role of the preparative starting compound. J. Mater. Res. 13, 2218 (1998).
29.Tsunekawa, S., Fukuda, T. andKasuya, A.: Blue shift in ultraviolet absorption spectra of monodisperse CeO2–x nanoparticles. J. Appl. Phys. 87, 1318 (2000).
30.Reddy, K. Madhusudan, Manorama, S.V. andReddy, A. Ramachandra: Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239 (2002).
31.Zhang, Y.W., Si, R., Liao, C.S., Yan, C.H., Xian, C.X. andKou, Y.: Facile alcohothermal synthesis, size-dependent ultraviolet absorption and enhanced CO conversion activity of ceria nanocrystals. J. Phys. Chem. B 107, 10159 (2003).
32.Yuhong, Z., Ming, W., Gouxing, X. andWeishen, Y.: Preparation and spectroscopic characterization of quantum size titanium dioixde. Chin. J. Internet 2, 17 (2000).
33.Ullrich, B., Bagnall, D.M., Sakai, H. andSegawa, Y.: Photoluminescence properties of thin CdS films on glass formed by laser ablation. Solid State Commun. 109, 757 (1999).
34.Hirano, M., Nakahara, C., Tanaike, O. andIngaki, M.: Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions. J. Solid State Chem. 170, 39 (2003).
35.Ovenstone, J.: Preparation of novel titania photocatalysts with high activity. J. Mater. Sci. 36, 1325 (2001).
36.Inagaki, M., Nakazawa, Y., Hirano, M., Kobayashi, Y. andToyoda, M.: Preparation of stable anatase-type TiO2 and its photocatalytic performance. Int. J. Inorg. Mater. 3, 809 (2001).
37.Kominami, H., Ishii, Y., Kohno, M., Konishi, S., Kera, Y. andOhtani, B.: Nanocrystalline brookite-type titanium(IV) oxide photocatalysts prepared by a solvothermal method: Correlation between their physical properties and photocatalytic activities. Catal. Lett. 91, 41 (2003).
38.Tan, T.T.Y., Beydoun, D. andAmal, R.: Photocatalytic reduction of Se(VI) in aqueous solutions in TiO2 system:kinetic modelling and reaction mechanism. J. Phys. Chem. B 107,4296 (2003).
39.Chang, R.Chemistry, 5th ed. (McGraw-Hill, New York, 1994).

Keywords

Related content

Powered by UNSILO

Selective synthesis of nanosized TiO2 by hydrothermal route: Characterization, structure property relation, and photochemical application

  • K. Madhusudan Reddy (a1), Debanjan Guin (a1), Sunkara V. Manorama (a1) and A. Ramachandra Reddy (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.