Skip to main content Accessibility help

Selective streptavidin bioconjugation on silicon and silicon carbide nanowires for biosensor applications

  • Elissa H. Williams (a1), John A. Schreifels (a2), Mulpuri V. Rao (a3), Albert V. Davydov (a4), Vladimir P. Oleshko (a4), Nancy J. Lin (a4), Kristen L. Steffens (a4), Sergiy Krylyuk (a5), Kris A. Bertness (a6), Amy K. Manocchi (a7) and Yaroslav Koshka (a8)...


A functionalization method for the specific and selective immobilization of the streptavidin (SA) protein on semiconductor nanowires (NWs) was developed. Silicon (Si) and silicon carbide (SiC) NWs were functionalized with 3-aminopropyltriethoxysilane (APTES) and subsequently biotinylated for the conjugation of SA. Existence of a thin native oxide shell on both Si and SiC NWs enabled efficient binding of APTES with the successive attachment of biotin and SA as was confirmed with x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and atomic force microscopy. Fluorescence microscopy demonstrated nonspecific, electrostatic binding of the SA and the bovine serum albumin (BSA) proteins to APTES-coated NWs. Inhibition of nonspecific BSA binding and enhancement of selective SA binding were achieved on biotinylated NWs. The biofunctionalized NWs have the potential to be used as biosensing platforms for the specific and selective detection of proteins.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Cui, Y., Wei, Q., Park, H., and Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).
2.Patolsky, F., Zheng, G., and Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78, 4261 (2006).
3.Li, Z., Chen, Y., Li, X., Kamins, T.I., Nauka, K., and Williams, R.S.: Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 4, 245 (2004).
4.Kim, J., Junkin, M., Kim, D.H., Kwon, S., Shin, Y.S., Wong, P.K., and Gale, B.K.: Applications, techniques, and microfluidic interfacing for nanoscale biosensing. Microfluid. Nanofluid. 7, 149 (2009).
5.Shao, M., Ma, D.D.D., and Lee, S.T.: Silicon nanowires- synthesis, properties, and application. Eur. J. Inorg. Chem. 27, 4264 (2010).
6.Lieber, C.M.: Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull. 36, 1052 (2011).
7.Yakimova, R., Petoral, R.M., Yazdi, G.R., Vahlberg, C., Lloyd Spetz, A., and Uvdal, K.: Surface functionalization and biomedical applications based on SiC. J. Phys. D: Appl. Phys. 40, 6435 (2007).
8.Petoral, R.M. Jr., Yazdi, G.R., Lloyd Spetz, A., Yakimova, R., and Uvdal, K.: Organosilane-functionalized wide-band-gap semiconductor surfaces. Appl. Phys. Lett. 99, 223904 (2007).
9.Williams, E.H., Davydov, A.V., Motayed, A., Sundaresan, S.G., Bocchini, P., Richter, L.J., Stan, G., Steffens, K., Zangmeister, R., Schreifels, J.A., and Rao, M.V.: Immobilization of streptavidin on 4H-SiC for biosensor development. Appl. Surf. Sci. 16, 6056 (2012).
10.Sioss, J.A., Stoermer, R.L., Sha, M.Y., and Keating, C.D.: Silica-coated, Au-/Ag-striped nanowires for bioanalysis. Langmuir 23, 11334 (2007).
11.Krylyuk, S., Davydov, A.V., and Levin, I.: Tapering control of Si nanowires grown from SiCl4 at reduced pressure. ACS Nano 5(1), 65 (2011).
12.Krishnan, B., Venkatesh, R., Thirumalai, K.G., Koshka, Y., Sundaresan, S., Levin, I., Davydov, A.V., and Merrett, J.N.: Substrate-dependent orientation and polytype control in SiC nanowires grown on 4H-SiC substrates. Cryst. Growth Des. 11, 538 (2011).
13.CasaXPS: Version 2.3.16, Dev. 54., Software for XPS data analysis, Casa Software Ltd. (2012). (accessed June 7, 2012).
14.Horcas, I., Fernández, R., Gómez-Rodriguez, G.M., Colchero, J., Gómez-Herrero, J., and Baro, A.M.: WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).
15.ImageJ: Version 1.45., Software for image analysis, NIH (2012). (accessed August 2, 2012).
16.Wagner, C.D., Naumkin, A.V., Kraut-Vass, A., Allison, J.W., Powell, C.J., and Rumble, J.R. Jr.: NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 3.5. (2007). (accessed July 30, 2012).
17.Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M., and Ohwada, M.: Growth of native oxide on a silicon surface. J. Appl. Phys. 68(3), 1272 (1990).
18.Beaux, M.F. II, Bridges, N.J., DeHart, M., Bitterwolf, T.E., and McIlroy, D.N.: X-ray photoelectron spectroscopic analysis of the surface chemistry of silica nanowires. Appl. Surf. Sci. 257, 5766 (2011).
19.Arranz, A., Palacio, D., Garcia-Fresnadillo, D., Orellana, G., Navarro, A., and Munoz, E.: Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization on GaN surface: An angle-resolved x-ray photoelectron spectroscopy study. Langmuir 24, 8667 (2008).
20.Vanderberg, E.T., Bertilsson, L., Liedberg, B., Uvdal, K., Erlandsson, R., Elwing, H., and Lundström, I.: Structure of 3-aminopropyl triethoxy silane on silicon oxide. J. Colloid Interface Sci. 147(1), 103 (1991).
21.Bierbaum, K.. Kinzler, M., Wöll, Ch., Grunze, M., Hähner, G., Heid, S., and Effenberger, F.: A near edge x-ray absorption fine structure spectroscopy and x-ray photoelectron spectroscopy study of thin film properties of self-assembled monolayers of organosilanes on oxidized Si(100). Langmuir 11, 512 (1995).
22.Ruiz-Taylor, L.A., Martin, T.L., and Wagner, P.: X-ray photoelectron spectroscopy and radiometry studies of biotin-derivatized poly(L-lysine)-grafted-poly(ethylene glycol) monolayers on metal oxides. Langmuir 17, 7317 (2001).
23.Yang, Z., Xie, Z., Liu, H., Yan, F., and Ju, H.: Streptavidin-functionalized three-dimensional ordered nanoporous silica film for highly efficient chemiluminescent immunosensing. Adv. Funct. Mater. 18, 3991 (2008).
24.Hijikata, Y., Yaguchi, H., Yoshikawa, M., and Yoshida, S.: Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope shaped oxide films. Appl. Surf. Sci. 184, 161 (2001).
25.Busiakiewicz, A., Huczko, A., Lange, H., Kowalczyk, P.J., Rogala, M., Kozlowski, W., Klusek, Z., Olejniczak, W., Polański, K., and Cudzilo, S.: Silicon carbide nanowires: Chemical characterization and morphology investigations. Phys. Status Solidi B 245(10), 2094 (2008).
26.Hornetz, B., Michel, J-J., and Halbritter, J.: ARXPS studies on SiO2-SiC interfaces and oxidation of 6H single crystal Si-(001) and C-(001) surfaces. J. Mater. Res. 9(12), 3088 (1994).
27.Hu, J.Q., Lu, Q.Y., Tang, K.B., Deng, B., Jiang, R.R., Qian, Y.T., Yu, W.C., Zhou, G.E., Liu, X.M., and Wu, J.X.: Synthesis and characterization of SiC nanowires through a reduction-carburization route. J. Phys. Chem. B 104, 5251 (2000).
28.Shen, G., Chen, D., Tang, K., Qian, Y., and Zhang, S.: Silicon carbide hollow nanospheres, nanowires, and coaxial nanowires. Chem. Phys. Lett. 375, 177 (2003).
29.Amy, F. and Chabal, Y.J.: Interaction of H, O2, and H2O with 3C-SiC surfaces. J. Chem. Phys. 119(12), 6201 (2003).
30.Cicero, G., Gallo, G., and Catellani, A.: Interaction of water molecules with SiC(001) surfaces. J. Phys. Chem. B 108, 16518 (2004).
31.Righetti, P.G. and Tudor, G.: Isoelectric points and molecular weights of proteins: A new table. J. Chromatogr. A 220(2), 115 (1981).
32.Wang, Y., Qian, W., Tan, Y., and Ding, S.: A label-free biosensor based on gold nanoshell monolayers for monitoring biomolecular interactions in diluted whole blood. Biosens. Bioelectron. 23, 1166 (2008).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed