Skip to main content Accessibility help

Selective lateral ZnO nanowire growth by surface diffusion on nanometer scale–patterned alumina on silicon

  • Bing Hu (a1), Nitin Chopra (a1), Pawan Tyagi (a1) and Bruce Hinds (a1)


Lateral ZnO nanowires (NWs) were selectively grown from the edge of a SiO2/Si–Al2O3–SiO2/Si multilayer structure for potential integration into devices using Si processing technology. Microstructural studies demonstrate a two-step growth process in which the tip region, with a diameter of ~10 nm, rapidly grew from the Al2O3 surface and, later, a base growth with a diameter of ~22 nm overgrew the existing narrow ZnO NW, halting further tip growth. Kinetics studies showed that surface diffusion on the alumina seed surface determined ZnO NW growth rate.


Corresponding author

b)Address all correspondence to this author. e-mail:


Hide All

Present address: Metallurgical and Materials Engineering, Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487



Hide All
1.Tans, S.J., Verschueren, A.R.M., and Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998).
2.Duan, X.F., Huang, Y., Agarwal, R., and Lieber, C.M.: Single-nanowire electrically driven lasers. Nature 421, 241 (2003).
3.Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., Cho, K.J., and Dai, H.J.: Nanotube molecular wires as chemical sensors. Science 287, 622 (2000).
4.Wang, Z.L.: Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 16, 829 (2004).
5.Park, J., Choi, H.H., Siebein, K., and Singh, R.K.: Two-step evaporation process for formation of aligned zinc oxide nanowires. J. Cryst. Growth 258, 342 (2003).
6.Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R., and Yang, P.D.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).
7.Xu, F., Yuan, Z.Y., Du, G.H., Ren, T.Z., Bouvy, C., Halasa, M., and Su, B.L.: Simple approach to highly oriented ZnO nanowire arrays: Large-scale growth, photoluminescence and photocatalytic properties. Nanotechnology 17, 588 (2006).
8.Comini, E., Faglia, G., Sberveglieri, G., Pan, Z.W., and Wang, Z.L.: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).
9.Jeong, M.C., Oh, B.Y., Nam, O.H., Kim, T., and Myoung, J.M.: Three-dimensional ZnO hybrid nanostructures for oxygen sensing application. Nanotechnology 17, 526 (2006).
10.Huang, M.H., Wu, Y.Y., Feick, H., Tran, N., Weber, E., and Yang, P.D.: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. (Deerfield Beach Fla.) 13, 113 (2001).
11.Yang, P.D., Yan, H.Q., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R.R., and Choi, H.J.: Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12, 323 (2002).
12.Greyson, E.C., Babayan, Y., and Odom, T.W.: Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv. Mater. (Deerfield Beach Fla.) 16, 1348 (2004).
13.Fan, H.J., Fuhrmann, B., Scholz, R., Syrowatka, F., Dadgar, A., Krost, A., and Zacharias, M.: Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. J. Cryst. Growth 287, 34 (2006).
14.Heo, Y.W., Varadarajan, V., Kaufman, M., Kim, K., Norton, D.P., Ren, F., and Fleming, P.H.: Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett. 81, 3046 (2002).
15.Zhu, Z.M., Chen, T.L., Gu, Y., Warren, J., and Osgood, R.M.: Zinc oxide nanowires grown by vapor-phase transport using selected metal catalysts: A comparative study. Chem. Mater. 17, 4227 (2005).
16.Lee, W., Jeong, M.C., and Myoung, J.M.: Evolution of the morphology and optical properties of ZnO nanowires during catalyst-free growth by thermal evaporation. Nanotechnology 15, 1441 (2004).
17.Conley, J.F., Stecker, L., and Ono, Y.: Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer. Nanotechnology 16, 292 (2005).
18.Wang, L.S., Zhang, X.Z., Zhao, S.Q., Zhou, G.Y., Zhou, Y.L., and Qi, J.J.: Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives. Appl. Phys. Lett. 86, 024108 (2005).
19.Jie, J.S., Wang, G.Z., Chen, Y.M., Han, X.H., Wang, Q.T., Xu, B., and Hou, J.G.: Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film. Appl. Phys. Lett. 86, 031909 (2005).
20.Sekar, A., Kim, S.H., Umar, A., and Hahn, Y.B.: Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders. J. Cryst. Growth 277, 471 (2005).
21.Baxter, J.B. and Aydil, E.S.: Epitaxial growth of ZnO nanowires on a- and c-plane sapphire. J. Cryst. Growth 274, 407 (2005).
22.Park, W.I. and Yi, G.C.: Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. (Deerfield Beach Fla.) 16, 87 (2004).
23.Li, S.Y., Lin, P., Lee, C.Y., and Tseng, T.Y.: Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. J. Appl. Phys. 95, 3711 (2004).
24.Gao, P.X., Liu, J., Buchine, B.A., Weintraub, B., Wang, Z.L., and Lee, J.L.: Bridged ZnO nanowires across trenched electrodes. Appl. Phys. Lett. 91, 142108 (2007).
25.Law, J.B.K. and Thong, J.T.L.: Lateral ZnO nanowire growth on a planar substrate using a growth barrier. Nanotechnology 18, 055601 (2007).
26.Qin, Y., Yang, R.S., and Wang, Z.L.: Growth of horizonatal ZnO nanowire arrays on any substrate. J. Phys. Chem. C 112, 18734 (2008).
27.Lee, J.S., Islam, M.S., and Kim, S.: Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method. Nano Lett. 6, 1487 (2006).
28.Tang, H., Chang, J.C., Shan, Y., Ma, D.D.D., Lui, T.-Y., Zapien, J.A., Lee, C.-S., and Lee, S.-T.: Growth mechanism of ZnO nanowires via direct Zn evaporation. J. Mater. Sci. 44, 563 (2008).
29.Pan, Z.W., Budai, J.D., Dai, Z.R., Liu, W.J., Paranthaman, M.P., and Dai, S.: Zinc oxide microtowers by vapor phase homoepitaxial regrowth. Adv. Mater. (Deerfield Beach Fla.) 21, 890 (2009).
30.Chopra, N., Kichambare, P.D., Andrews, R., and Hinds, B.J.: Control of multiwalled carbon nanotube diameter by selective growth on the exposed edge of a thin film multilayer structure. Nano Lett. 2, 1177 (2002).
31.Chopra, N., Xu, W.T., De Long, L.E., and Hinds, B.J.: Incident angle dependence of nanogap size in suspended carbon nanotube shadow lithography. Nanotechnology 16, 133 (2005).
32.Lefebvre, J., Radosavljevic, M., and Johnson, A.T.: Fabrication of nanometer size gaps in a metallic wire. Appl. Phys. Lett. 76, 3828 (2000).
33.Hausmann, D., Becker, J., Wang, S.L., and Gordon, R.G.: Rapid vapor deposition of highly conformal silica nanolaminates. Science 298, 402 (2002).
34.Elam, J.W., Sechrist, Z.A., and George, S.M.: ZnO/Al2O3 nanolaminates fabricated by atomic layer deposition: Growth and surface-roughness measurements. Thin Solid Films 414, 43 (2002).
35.Hoivik, N.D., Elam, J.W., Linderman, R.J., Bright, V.M., George, S.M., and Lee, Y.C.: Atomic layer deposited protective coatings for microelectromechanical systems. Sens. Actuators A A103, 100 (2003).
36.Gao, K.Y., Seyller, T., Ley, L., Ciobanu, F., Pensl, G., Tadich, A., Riley, J.D., and Leckey, R.G.C.: Al2O3 prepared by atomic layer deposition as gate dielectric on 6H-SiC(0001). Appl. Phys. Lett. 83, 1830 (2003).
37.Hu, B., Yao, J.Y., and Hinds, B.J.: Nanogap electrodes formed at the exposed edge of Au/self-assembled monolayer/Al2O3/Au tunnel structures grown by atomic layer deposition. Appl. Phys. Lett. 97, 203111 (2010).
38.Cha, S.N., Song, B.G., Jang, J.E., Jung, J.E., Han, I.T., Ha, J.H., Hong, J.P., Kang, D.J., and Kim, J.M.: Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer. Nanotechnology 19, 235601 (2008).
39.Roy, V.A.L., Djurisic, A.B., Chan, W.K., Gao, J., Lui, H.F., and Surya, C.: Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl. Phys. Lett. 83, 141 (2003).
40.Kim, H. and Sigmund, W.: ZnO nanocrystals synthesized by physical vapor deposition. J. Nanosci. Nanotechnol. 4, 275 (2004).
41.Feng, L., Cheng, C., Lei, M., Wang, N., and Loy, M.M.T.: Spatially resolved photoluminescence study of single ZnO tetrapods. Nanotechnology 19, 405702 (2008).
42.Kim, D.S., Gosele, U., and Zacharias, M.: Surface-diffusion induced growth of ZnO nanowires. J. Cryst. Growth 311, 3216 (2009).
43.Rackauskas, S., Nasibulin, A.G., Jiang, H., Tian, Y., Statkute, G., Shandakov, S.D., Lipsanen, H., and Kauppinen, E.I.: Mechanistic investigation of ZnO nanowire growth. Appl. Phys. Lett. 95, 183114 (2009).
44.Wagner, R.S. and Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth (new method growth catalysis from impurity whisker epitaxial + large crystals Si E). Appl. Phys. Lett. 4, 89 (1964).
45.Brenner, S.S. and Sears, G.W.: Mechanism of whisker growth—III. Nature of growth sites. Acta Metall. Mater. 4, 268 (1956).
46.Heo, Y.W., Ip, K., Pearton, S.J., Norton, D.P., and Budai, J.D.: Growth of ZnO thin films on c-plane Al2O3 by molecular beam epitaxy using ozone as an oxygen source. Appl. Surf. Sci. 252, 7442 (2006).


Selective lateral ZnO nanowire growth by surface diffusion on nanometer scale–patterned alumina on silicon

  • Bing Hu (a1), Nitin Chopra (a1), Pawan Tyagi (a1) and Bruce Hinds (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed