Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T02:53:42.947Z Has data issue: false hasContentIssue false

Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure

Published online by Cambridge University Press:  31 January 2011

Masamichi Tsuji
Affiliation:
Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152, Japan
Sridhar Komarneni
Affiliation:
Materials Research Laboratory and Department of Agronomy, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Get access

Abstract

The ion-exchange selectivity of divalent transition metal ions on cryptomelane-type manganic acid (CMA) with tunnel structure has been studied using the distribution coefficients (Kd) at a small fractional exchange in nitrate media. All metal ions studied showed linear relationships with a slope of −2 on the log-log plot of Kd vs [HNO3] which clearly indicated that the adsorption process is an “ideal” ion-exchange. The selectivity increased in the following order: Pb ≫ Mn > Co > Cu > Hg > Cd > Zn > Ni. The high selectivity of the manganic acid was successfully utilized in the removal of Co2+ from seawater and tap water.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Vesely, V. and Pekarek, V.Talanta 19, 219 (1972).CrossRefGoogle Scholar
2Abe, M.Bunseki Kagaku 23, 1254 (1974).Google Scholar
3Amphlett, C. B.Inorganic Ion Exchangers (Elsevier, Amsterdam, 1964).Google Scholar
4Morgan, J.J. and Stumm, W.J. Colloid Chem. 19, 347 (1964).Google Scholar
5Krauskopf, K. B.Geochim. Cosmochim. Acta 37, 1277 (1956).Google Scholar
6Murray, D.J.Healy, T.W. and Fuerstenau, D.W.Adv. Chem. Ser. 79, 74 (1968).Google Scholar
7Murray, J. W.Geochim. Cosmochim. Acta 39, 505 (1975).Google Scholar
8Loganathan, P. and Burau, R. G.Geochim. Cosmochim. Acta 37, 1277 (1973).CrossRefGoogle Scholar
9Gadde, R.R. and Laitinen, H. A.Anal. Chem. 46, 2022 (1974).CrossRefGoogle Scholar
10Tsuji, M. and Abe, M.Solvent Extr. Ion Exchange 2, 253 (1984).CrossRefGoogle Scholar
11Tsuji, M. and Abe, M.Bull. Chem. Soc. Jpn. 58, 1109 (1985).Google Scholar
12Bystrom, A. and Bystrom, A. M.Acta Crystallogr. 3, 145 (1950).CrossRefGoogle Scholar
13Tsuji, M. and Komarneni, S.Sep. Sci. Technol. 26, 647 (1991).CrossRefGoogle Scholar
14Abe, M.Tsuji, M.Qureshi, S. P. and Uchikoshi, H.Chromatogr. 13, 626 (1980).CrossRefGoogle Scholar
15Abe, M.Wang, P.Chitraker, R. and Tsuji, M.Analyst 114, 435 (1989).CrossRefGoogle Scholar
16Strelow, F.W.E.Rethemeyer, R. and Bothma, C.J.C.Anal. Chem. 37, 106 (1965).CrossRefGoogle Scholar
17Shannon, R.D.Acta Crystallogr. 32, 751 (1976).CrossRefGoogle Scholar
18Sillen, L. G. and Martel, A. E. “Stability Constants of Metal-Ion Complexes,” Special Publication, No. 17 (1964).Google Scholar
19Inoue, Y. and Yamazaki, H.Bull. Chem. Soc. Jpn. 57, 3437 (1984).Google Scholar
20Mimura, H.Izeki, I.Kudo, K. and Kanno, T.Senkeniko 40, 27 (1984).Google Scholar