Skip to main content Accessibility help

Room temperature wear study of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys under oil lubricating conditions

  • Saurav Kumar (a1), Amar Patnaik (a2), Ajaya Kumar Pradhan (a1) and Vinod Kumar (a3)


This study aims to investigate the sliding wear behavior of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys (HEAs) under oil lubricating conditions at room temperature. Phase and microstructural characterizations of HEAs are performed by utilizing X-ray photoelectron spectroscopy (XRD) and scanning electron microscope (SEM). The compressive yield strength of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) HEAs is observed to decrease from 1169.35 to 257.63 MPa. Plastic deformation up to 75% is achieved in the case of Al0.4FeCrNiCox=1 HEA. The microhardness of HEA samples is found to decrease from 377 to 199 HV after the addition of cobalt content from x = 0 to 1.0 mol. Thermal analysis is performed using a differential scanning calorimeter. It is confirmed that Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) HEAs do not undergo any phase change up to 1000 °C. The specific wear rate of Al0.4FeCrNiCox=1 HEA is observed to be highest in all wear conditions. The worn surfaces were analyzed by SEM with attached energy-dispersive spectroscopy, 3D profiling, and X-ray photoelectron spectroscopy (XPS).


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).
2.Murty, B.S., Yeh, J.W., and Ranganathan, S.: High-Entropy Alloys (Elsevier, London, 2014).
3.Koch, C.C.: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 34353444 (2017).
4.Maulik, O., Kumar, D., Kumar, S., Dewangan, S.K., and Kumar, V.: Structure and properties of light weight high entropy alloys: A brief review. Mater. Res. Express 5 (2018).
5.Munitz, A., Salhov, S., Hayun, S., and Frage, N.: Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Alloys Compd. 683, 221230 (2016).
6.Zou, Y.: Nanomechanical studies of high-entropy alloys. J. Mater. Res., 33, 30353054 (2018).
7.Shun, T.T. and Du, Y.C.: Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J. Alloys Compd. 479, 157160 (2009).
8.Guo, Y., Liu, L., Zhang, Y., Qi, J., Wang, B., Zhao, Z., Shang, J., and Xiang, J.: A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys. J. Mater. Res., 33, 32583265 (2018).
9.Ghassemali, E., Sonkusare, R., Biswas, K., and Gurao, N.P.: In situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy. J. Alloys Compd. 710, 539546 (2017).
10.Zhang, M. and Zhang, L.: Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbx high-entropy alloys. J. Mater. Res., 33, 32763286 (2018).
11.Wang, R., Zhang, K., Davies, C., and Wu, X.: Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J. Alloys Compd. 694, 971981 (2017).
12.Lin, C.M. and Tsai, H.L.: Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics 19, 288294 (2011).
13.Kumar, D., Maulik, O., Sharma, V.K., Prasad, Y.V.S.S., and Kumar, V.: Understanding the effect of tungsten on corrosion behavior of AlCuCrFeMnWx high-entropy alloys in 3.5 wt% NaCl solution. J. Mater. Eng. Perform. 27, 44814488 (2018).
14.Butler, T.M. and Weaver, M.L.: Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J. Alloys Compd. 674, 229244 (2016).
15.Liu, Y.X., Cheng, C.Q., Shang, J.L., Wang, R., Li, P., and Zhao, J.: Oxidation behavior of high-entropy alloys AlxCoCrFeNi (x = 0.15, 0.4) in supercritical water and comparison with HR3C steel. Trans. Nonferrous Met. Soc. China 25, 13411351 (2015).
16.Chen, X., Sui, Y., Qi, J., He, Y., Wei, F., Meng, Q., and Sun, Z.: Microstructure of Al1.3CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C. J. Mater. Res. 32, 21092116 (2017).
17.Wang, Y., Yang, Y., Yang, H., Zhang, M., and Qiao, J.: Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J. Alloys Compd. 725, 365372 (2017).
18.Wang, Y., Yang, Y., Yang, H., Zhang, M., Ma, S., and Qiao, J.: Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys., 210, 233239 (2018).
19.Yadav, S., Kumar, A., and Biswas, K.: Wear behavior of high entropy alloys containing soft dispersoids (Pb, Bi). Mater. Chem. Phys. 210, 222232 (2018).
20.Kumar, S., Kumar, D., Maulik, O., Pradhan, A.K., Kumar, V., and Patnaik, A.: Synthesis and air jet erosion study of AlxFe1.5CrMnNi0.5 (x = 0.3, 0.5) high-entropy alloys. Metall. Mater. Trans. A, 49, 56075618 (2018).
21.Kumar, D., Maulik, O., Kumar, S., Prasad, Y.V.S.S., and Kumar, V.: Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 7177 (2017).
22.Maulik, O. and Kumar, V.: Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater. Charact. 110, 116125 (2015).
23.Maulik, O., Kumar, D., Kumar, S., Fabijanic, D.M., and Kumar, V.: Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77, 4656 (2016).
24.Zhang, Y., Lu, Z.P., Ma, S.G., Liaw, P.K., Tang, Z., Cheng, Y.Q., and Gao, M.C.: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 4, 5762 (2014).
25.Qiao, J.W., Ma, S.G., Huang, E.W., Chuang, C.P., Liaw, P.K., and Zhang, Y.: Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperature. Mater. Sci. Forum 688, 419425 (2011).
26.Wang, Z., Gao, M.C., Ma, S.G., Yang, H.J., Wang, Z.H., Moroz, M.Z., and Qiao, J.W.: Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 High-entropy alloy. Mater. Sci. Eng., A 645, 163169 (2015).
27.Chen, W., Fu, Z., Fang, S., Xiao, H., and Zhu, D.: Alloying behavior microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 51, 854860 (2013).
28.Fang, S., Chen, W., and Fu, Z.: Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater. Des. 54, 973979 (2014).
29.Qin, G., Xue, W., Fan, C., Chen, R., Wang, L., Su, Y., Ding, H., and Guo, J.: Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100−xCox high-entropy alloys. Mater. Sci. Eng., A 710, 200205 (2018).
30.Zhao, Y., Cui, H., Wang, M., Zhao, Y., Zhang, X., and Wang, C.: The microstructures and properties changes induced by Al:Co ratios of the AlxCrCo2−xFeNi high entropy alloys. Mater. Sci. Eng., A 733, 153163 (2018).
31.Hsu, C.Y., Yeh, J.W., Chen, S.K., and Shun, T.T.: Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 14651469 (2004).
32.Tong, C.J., Chen, M.R., Chen, S.K., Yeh, J.W., Shun, T.T., Lin, S.J., and Chang, S.Y.: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 12631271 (2005).
33.Chen, M.R., Lin, S.J., Yeh, J.W., Chen, S.K., Huang, Y.S., and Chuang, M.H.: Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 37, 13631369 (2006).
34.Duan, H., Wu, Y., Hua, M., Yuan, C., Wang, D., Tua, J., Kou, H., and Li, J.: Tribological properties of AlCoCrFeNiCu high-entropy alloy in hydrogen peroxide solution and in oil lubricant. Wear 297, 10451051 (2013).
35.Yu, Y., Liu, W.M., Zhang, T.B., Li, J.S., Wang, J., Kou, H.C., and Li, J.: Microstructure and tribological properties of AlCoCrFeNiTi0.5 high-entropy alloy in hydrogen peroxide solution. Metall. Mater. Trans. A 45, 201207 (2014).
36.Yu, Y., Wang, J., Li, J., Yang, J., Kou, H., and Liu, W.: Tribological behavior of AlCoCrFeNi(Ti0.5) high entropy alloys under oil and MACs lubrication. J. Mater. Sci. Technol. 32, 470476 (2016).
37.Kao, Y.F., Chen, T.J., Chen, S.K., and Yeh, J.W.: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 5764 (2009).
38.Takeuchi, A. and Inoue, A.: Calculation of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans., JIM 41, 13721378 (2000).
39.Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433446 (2011).
40.Dong, Y., Lu, Y., Jiang, L., Wang, T., and Li, T.: Effects of electro-negativity on the stability of topologically closepacked phase in high entropy alloys. Intermetallics 52, 105109 (2014).
41.Baker, H.: ASM Handbook: Alloy phase diagrams, Volume 3 (ASM International, Materials Park, 1992).
42.Chen, Y., Li, Y., Kurosu, S., Yamanaka, K., Tang, N., and Chiba, A.: Effects of microstructures on the sliding behavior of hot-pressed CoCrMo alloys. Wear 319, 200210 (2014).
43.Kukshal, V., Patnaik, A., and Bhat, I.K.: Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high entropy alloys. Mater. Res. Express 5, (2018).
44.Li, C., Li, J.C., Zhao, M., and Jiang, Q.: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. J. Alloys Compd. 475, 752757 (2009).
45.Joseph, J., Jarvis, T., Wu, X., Stanford, N., Hodgson, P., and Fabijanic, D.M.: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng., A 633, 184193 (2015).
46.Sperka, P., Krupka, I., and Hartl, M.: The effect of surface grooves on film breakdowns in point contacts. Tribol. Int. 102, 249256 (2016).
47.Wang, D.S. and Lin, J.F.: Effect of surface roughness on elastohydrodynamic lubrication of line contacts. Tribol. Int. 24, 5162 (1991).
48.Hutchings, I.M.: Tribology: Friction and Wear of Engineering Materials (Elsevier, London, 1995).
49.Conceicao, L. and D’Oliveira, A.S.C.M.: The effect of oxidation on the tribolayer and sliding wear of a Co-based coating. Surf. Coat. Technol. 288, 6978 (2016).
50.Mitrovic, S., Adamovic, D., Zivic, F., Dzunic, D., and Pantic, M.: Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions. Appl. Surf. Sci. 290, 223232 (2014).
51.Murakami, T., Mano, H., Hibi, Y., and Sasaki, S.: Friction and wear properties of Fe7Mo6-based alloy in ethyl alcohol. Tribol. Int. 43, 21832189 (2010).
53.Bhushan, B.: Modern Tribology Handbook (CRC Press, London, U.K., 2001); p. 455492.
54.Mannekote, J.K. and Kailas, S.V.: The effect of oxidation on the tribological performance of few vegetable oils. J. Mater. Res. Technol. 1, 9195 (2012).
55.Nascimento, E.M., Amaral, L.M., and D’Oliveira, A.S.C.M.: Characterization and wear of oxides formed on CoCr MoSi alloy coatings. Surf. Coat. Technol. 332, 408413 (2017).
56.Ma, L., Wang, L., Nie, Z., Wang, F., Xue, Y., Zhou, J., Cao, T., Wang, Y., and Ren, Y.: Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron based high-energy X-ray diffraction. Acta Mater. 128, 1221 (2017).
57.ASTM E3-11: Standard Guide for Preparation of Metallographic Specimens, American Society for Testing and Materials (ASM Society, USA, 2011).


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Kumar et al. supplementary material
Kumar et al. supplementary material 1

 Word (2.5 MB)
2.5 MB

Room temperature wear study of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys under oil lubricating conditions

  • Saurav Kumar (a1), Amar Patnaik (a2), Ajaya Kumar Pradhan (a1) and Vinod Kumar (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.