Skip to main content Accessibility help

Room temperature deformation mechanisms of Mg/Nb nanolayered composites

  • Milan Ardeljan (a1), Marko Knezevic (a1), Manish Jain (a2), Siddhartha Pathak (a2), Anil Kumar (a3), Nan Li (a4), Nathan A. Mara (a4), J. Kevin Baldwin (a4) and Irene J. Beyerlein (a5)...


In this work, the deformation mechanisms underlying the room temperature deformation of the pseudomorphic body centered cubic (BCC) Mg phase in Mg/Nb nanolayered composites are studied. Nanolayered composites comprised of 50% volume fraction of Mg and Nb were synthesized using physical vapor deposition with the individual layer thicknesses h of 5, 6.7, and 50 nm. At the lower layer thicknesses of h = 5 and 6.7 nm, Mg has undergone a phase transition from HCP to BCC such that it formed a coherent interface with the adjoining Nb phase. Micropillar compression testing normal and parallel to the interface plane shows that the BCC Mg nanolayered composite is much stronger and can sustain higher strains to failure than the HCP Mg nanolayered composite. A crystal plasticity model incorporating confined layer slip is presented and applied to link the observed anisotropy and hardening in the deformation response to the underlying slip mechanisms.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Room temperature deformation mechanisms of Mg/Nb nanolayered composites
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Room temperature deformation mechanisms of Mg/Nb nanolayered composites
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Room temperature deformation mechanisms of Mg/Nb nanolayered composites
      Available formats


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

This paper has been selected as an Invited Feature Paper.



Hide All
1.Van Heerden, D., Josell, D., and Shechtman, D.: The formation of f.c.c. titanium in titanium–aluminum multilayers. Acta Mater. 44, 297 (1996).
2.Banerjee, R., Zhang, X.D., Dregia, S.A., and Fraser, H.L.: Phase stability in Al/Ti multilayers. Acta Mater. 47, 1153 (1999).
3.Wormeester, H., Hüger, E., and Bauer, E.: Hcp and bcc Cu and Pd films. Phys. Rev. Lett. 77, 1540 (1996).
4.Zheng, J.Q., Ketterson, J.B., and Felcher, G.P.: Synthesis of layered crystals of titanium silver. J. Appl. Phys. 53, 3624 (1982).
5.Ahuja, R. and Fraser, H.L.: Microstructural transitions in titanium–aluminum thin film multilayers. J. Electron. Mater. 23, 1027 (1994).
6.Banerjee, R., Ahuja, R., and Fraser, H.L.: Dimensionally induced structural transformations in titanium–aluminum multilayers. Phys. Rev. Lett. 76, 3778 (1996).
7.Chakraborty, J., Kumar, K., Ranjan, R., Chowdhury, S.G., and Singh, S.R.: Thickness-dependent fcc–hcp phase transformation in polycrystalline titanium thin films. Acta Mater. 59, 2615 (2011).
8.Dregia, S.A., Banerjee, R., and Fraser, H.L.: Polymorphic phase stability in thin multilayers. Scr. Mater. 39, 217 (1998).
9.Lowe, W.P. and Geballe, T.H.: NbZr multilayers. I. Structure and superconductivity. Phys. Rev. B 29, 4961 (1984).
10.Zhang, J.Y., Zhang, P., Zhang, X., Wang, R.H., Liu, G., Zhang, G.J., and Sun, J.: Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers. Mater. Sci. Eng., A 545, 118 (2012).
11.Uchic, M.D., Shade, P.A., and Dimiduk, D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).
12.Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008).
13.Monclús, M.A., Zheng, S.J., Mayeur, J.R., Beyerlein, I.J., Mara, N.A., Polcar, T., Llorca, J., and Molina-Aldareguía, J.M.: Optimum high temperature strength of two-dimensional nanocomposites. APL Mater. 1, 052103 (2013).
14.Snel, J., Monclús, M.A., Castillo-Rodríguez, M., Mara, N., Beyerlein, I.J., Llorca, J., and Molina-Aldareguía, J.M.: Deformation mechanism map of Cu/Nb nanoscale metallic multilayers as a function of temperature and layer thickness. JOM 69, 239259 (2017).
15.Zhang, J.Y., Lei, S., Liu, Y., Niu, J.J., Chen, Y., Liu, G., Zhang, X., and Sun, J.: Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Mater. 60, 1610 (2012).
16.Raghavan, R., Wheeler, J.M., Harzer, T.P., Chawla, V., Djaziri, S., Thomas, K., Philippi, B., Kirchlechner, C., Jaya, B.N., Wehrs, J., Michler, J., and Dehm, G.: Transition from shear to stress-assisted diffusion of copper–chromium nanolayered thin films at elevated temperatures. Acta Mater. 100, 73 (2015).
17.Mara, N.A. and Beyerlein, I.J.: Interface-dominant multilayers fabricated by severe plastic deformation: Stability under extreme conditions. Curr. Opin. Solid State Mater. Sci. 19, 265 (2015).
18.Mara, N.A., Bhattacharyya, D., Hoagland, R.G., and Misra, A.: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr. Mater. 58, 874 (2008).
19.Han, W., Demkowicz, M.J., Mara, N.A., Fu, E., Sinha, S., Rollett, A.D., Wang, Y., Carpenter, J.S., Beyerlein, I.J., and Misra, A.: Design of radiation tolerant materials via interface engineering. Adv. Mater. 25, 6975 (2013).
20.Han, W.Z., Misra, A., Mara, N.A., Germann, T.C., Baldwin, J.K., Shimada, T., and Luo, S.N.: Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos. Mag. 91, 4172 (2011).
21.Misra, A., Hoagland, R.G., and Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021 (2004).
22.Misra, A. and Hoagland, R.G.: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20, 2046 (2005).
23.Knezevic, M. and Savage, D.J.: A high-performance computational framework for fast crystal plasticity simulations. Comput. Mater. Sci. 83, 101 (2014).
24.Subedi, S., Beyerlein, I.J., LeSar, R., and Rollett, A.D.: Strength of nanoscale metallic multilayers. Scr. Mater. (2017).
25.Zheng, S.J., Wang, J., Carpenter, J.S., Mook, W.M., Dickerson, P.O., Mara, N.A., and Beyerlein, I.J.: Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 79, 282 (2014).
26.Li, N., Wang, J., Misra, A., and Huang, J.Y.: Direct observations of confined layer slip in Cu/Nb multilayers. Microsc. Microanal. 18, 1155 (2012).
27.Li, N., Mara, N.A., Wang, J., Dickerson, P., Huang, J.Y., and Misra, A.: Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers. Scr. Mater. 67, 479 (2012).
28.Hattar, K., Misra, A., Dosanjh, M.R.F., Dickerson, P., Robertson, I.M., and Hoagland, R.G.: Direct observation of crack propagation in copper–niobium multilayers. J. Eng. Mater. Technol. 134, 021014 (2012).
29.Pathak, S., Velisavljevic, N., Baldwin, J.K., Jain, M., Zheng, S., Mara, N.A., and Beyerlein, I.J.: Strong, ductile, and thermally stable bcc-Mg nanolaminates. Sci. Rep. 7, 8264 (2017).
30.Mordike, B.L. and Ebert, T.: Magnesium: Properties–applications–potential. Mater. Sci. Eng., A 302, 37 (2001).
31.Pollock, T.M.: Weight loss with magnesium alloys. Science 328, 986 (2010).
32.Beyerlein, I.J., McCabe, R.J., and Tomé, C.N.: Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study. J. Mech. Phys. Solid. 59, 988 (2011).
33.Proust, G., Tomé, C.N., Jain, A., and Agnew, S.R.: Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 25, 861 (2009).
34.Ardeljan, M., Beyerlein, I.J., McWilliams, B.A., and Knezevic, M.: Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: Application to AZ31 magnesium alloy. Int. J. Plast. 83, 90 (2016).
35.Kelley, E. and Hosford, W.: Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 242, 5 (1968).
36.Kabirian, F., Khan, A.S., and Gnäupel-Herlod, T.: Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions. Int. J. Plast. 68, 1 (2015).
37.Khan, A.S., Pandey, A., Gnäupel-Herold, T., and Mishra, R.K.: Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures. Int. J. Plast. 27, 688 (2011).
38.Ishikawa, K., Watanabe, H., and Mukai, T.: High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures. Mater. Lett. 59, 1511 (2005).
39.Watanabe, H. and Ishikawa, K.: Effect of texture on high temperature deformation behavior at high strain rates in a Mg–3Al–1Zn alloy. Mater. Sci. Eng., A 523, 304 (2009).
40.Arul Kumar, M., Beyerlein, I.J., and Tomé, C.N.: A measure of plastic anisotropy for hexagonal close packed metals: Application to alloying effects on the formability of Mg. J. Alloys Compd. 695, 1488 (2017).
41.Arul Kumar, M., Beyerlein, I.J., Lebensohn, R.A., and Tomé, C.N.: Role of alloying elements on twin growth and twin transmission in magnesium alloys. Mater. Sci. Eng., A 706, 295 (2017).
42.Junkaew, A., Ham, B., Zhang, X., and Arróyave, R.: Tailoring the formation of metastable Mg through interfacial engineering: A phase stability analysis. Calphad 45, 145 (2014).
43.Kumar, A., Beyerlein, I.J., and Wang, J.: First-principles study of the structure of Mg/Nb multilayers. Appl. Phys. Lett. 105, 071602 (2014).
44.Oppedal, A.L., El Kadiri, H., Tomé, C.N., Kaschner, G.C., Vogel, S.C., Baird, J.C., and Horstemeyer, M.F.: Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium. Int. J. Plast. 30–31, 41 (2012).
45.Hielscher, R. and Schaeben, H.: A novel pole figure inversion method: Specification of the MTEX algorithm. J. Appl. Crystallogr. 41, 1024 (2008).
46.Ham, B. and Zhang, X.: High strength Mg/Nb nanolayer composites. Mater. Sci. Eng., A 528, 2028 (2011).
47.Junkaew, A., Ham, B., Zhang, X., Talapatra, A., and Arróyave, R.: Stabilization of bcc Mg in thin films at ambient pressure: Experimental evidence and ab initio calculations. Mater. Res. Lett. 1, 161 (2013).
48.Chen, Y., Shao, S., Liu, X.Y., Yadav, S.K., Li, N., Mara, N., and Wang, J.: Misfit dislocation patterns of Mg–Nb interfaces. Acta Mater. 126, 552 (2017).
49.Youssef, K.M., Wang, Y.B., Liao, X.Z., Mathaudhu, S.N., Kecskés, L.J., Zhu, Y.T., and Koch, C.C.: High hardness in a nanocrystalline Mg97Y2Zn1 alloy. Mater. Sci. Eng., A 528, 7494 (2011).
50.Popova, E.N., Popov, V.V., Romanov, E.P., and Pilyugin, V.P.: Thermal stability of nanocrystalline Nb produced by severe plastic deformation. Phys. Met. Metallogr. 101, 52 (2006).
51.Yu, H., Xin, Y., Wang, M., and Liu, Q.: Hall–Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 34, 248 (2018).
52.Hauser, F.E., Landon, P.R., and Dorn, J.E.: Fracture of magnesium alloys at low temperature. Trans. Am. Inst. Min. Metall. Eng. 48, 589 (1956).
53.Ono, N., Nowak, R., and Miura, S.: Effect of deformation temperature on Hall–Petch relationship registered for polycrystalline magnesium. Mater. Lett. 58, 39 (2004).
54.Cordero, Z.C., Knight, B.E., and Schuh, C.A.: Six decades of the Hall–Petch effect—A survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 61, 495 (2016).
55.Gao, Y. and Bei, H.: Strength statistics of single crystals and metallic glasses under small stressed volumes. Prog. Mater. Sci. 82, 118 (2016).
56.El-Awady, J.A., Woodward, C., Dimiduk, D.M., and Ghoniem, N.M.: Effects of focused ion beam induced damage on the plasticity of micropillars. Phys. Rev. B 80, 104104 (2009).
57.Yu, Q., Qi, L., Mishra, R.K., Li, J., and Minor, A.M.: Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale. Proc. Natl. Acad. Sci. U.S.A. 110, 13289 (2013).
58.Zhu, Y.T., Liao, X.Z., and Wu, X.L.: Deformation twinning in bulk nanocrystalline metals: Experimental observations. JOM 60, 60 (2008).
59.Lentz, M., Risse, M., Schaefer, N., Reimers, W., and Beyerlein, I.J.: Strength and ductility with $\left\{ {10\bar{1}1} \right\}$$\left\{ {10\bar{1}2} \right\}$ double twinning in a magnesium alloy. Nat. Commun. 7, 11068 (2016).
60.Nizolek, T., Mara, N.A., Beyerlein, I.J., Avallone, J.T., and Pollock, T.M.: Enhanced plasticity via kinking in cubic metallic nanolaminates. Adv. Eng. Mater. 17, 781 (2015).
61.Nizolek, T.J., Begley, M.R., McCabe, R.J., Avallone, J.T., Mara, N.A., Beyerlein, I.J., and Pollock, T.M.: Strain fields induced by kink band propagation in Cu–Nb nanolaminate composites. Acta Mater. 133, 303 (2017).
62.Zhang, R., Wang, J., Beyerlein, I., and Germann, T.: Twinning in bcc metals under shock loading: A challenge to empirical potentials. Philos. Mag. Lett. 91, 731 (2011).
63.Kumar, A., Morrow, B.M., McCabe, R.J., and Beyerlein, I.J.: An atomic-scale modeling and experimental study of 〈c + a〉 dislocations in Mg. Mater. Sci. Eng., A 695, 270 (2017).
64.Lu, G., Kioussis, N., Bulatov, V.V., and Kaxiras, E.: Generalized stacking fault energy surface and dislocation properties of aluminum. Phys. Rev. B 62, 3099 (2000).
65.Vítek, V.: Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 18, 773 (1968).
66.Frenkel, J.: Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper. Z. Phys. 37, 572 (1926).
67.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
68.Sin’ko, G.V. and Smirnov, N.A.: Ab initio. Phys. Rev. B 80, 104113 (2009).
69.Kumar, A., Wang, J., and Tomé, C.N.: First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals. Acta Mater. 85, 144 (2015).
70.Straumanis, M.E. and Zyszczynski, S.: Lattice parameters, thermal expansion coefficients and densities of Nb, and of solid solutions Nb–O and Nb–N–O and their defect structure. J. Appl. Crystallogr. 3, 1 (1970).
71.Slutsky, L.J. and Garland, C.W.: Elastic constants of magnesium from 4.2° K to 300° K. Phys. Rev. 107, 972 (1957).
72.Kumar, A., Kumar, M.A., and Beyerlein, I.J.: First-principles study of crystallographic slip modes in ω-Zr. Sci. Rep. 7, 8932 (2017).
73.Ardeljan, M., Savage, D.J., Kumar, A., Beyerlein, I.J., and Knezevic, M.: The plasticity of highly oriented nano-layered Zr/Nb composites. Acta Mater. 115, 189 (2016).
74.Joós, B. and Duesbery, M.S.: The peierls stress of dislocations: An analytic formula. Phys. Rev. Lett. 78, 266 (1997).
75.Knezevic, M., Drach, B., Ardeljan, M., and Beyerlein, I.J.: Three dimensional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models. Comput. Meth. Appl. Mech. Eng. 277, 239259 (2014).
76.Ardeljan, M., Knezevic, M., Nizolek, T., Beyerlein, I.J., Mara, N.A., and Pollock, T.M.: A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model. Int. J. Plast. 74, 35 (2015).
77.Ardeljan, M., Beyerlein, I.J., and Knezevic, M.: A dislocation density based crystal plasticity finite element model: Application to a two-phase polycrystalline HCP/BCC composites. J. Mech. Phys. Solid. 66, 16 (2014).
78.Bolef, D.I.: Elastic constants of single crystals of the bcc transition elements V, Nb, and Ta. J. Appl. Phys. 32, 100 (1961).
79.Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).
80.Yoo, M.H.: Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Mater. Trans. A 12, 409 (1981).
81.Partridge, P.G.: The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 12, 169 (1967).
82.Yoshinaga, H., Obara, T., and Morozumi, S.: Twinning deformation in magnesium compressed along the C-axis. Mater. Sci. Eng. 12, 255 (1973).
83.Ardeljan, M., McCabe, R.J., Beyerlein, I.J., and Knezevic, M.: Explicit incorporation of deformation twins into crystal plasticity finite element models. Comput. Meth. Appl. Mech. Eng. 295, 396 (2015).
84.Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).
85.Misra, A., Verdier, M., Kung, H., Embury, J.D., and Hirth, J.P.: Deformation mechanism maps for polycrystalline metallic multiplayers. Scr. Mater. 41, 973 (1999).
86.Nix, W.D.: Mechanical properties of thin films. Metall. Mater. Trans. A 20, 2217 (1989).
87.Embury, J.D. and Hirth, J.P.: On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall. Mater. 42, 2051 (1994).
88.Hoagland, R.G., Kurtz, R.J., and Henager, C.H.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).
89.Hoagland, R.G., Mitchell, T.E., Hirth, J.P., and Kung, H.: On the strengthening effects of interfaces in multilayer fee metallic composites. Philos. Mag. A 82, 643 (2002).
90.Shen, Y. and Anderson, P.M.: Transmission of a screw dislocation across a coherent, non-slipping interface. J. Mech. Phys. Solid. 55, 956 (2007).
91.Zeng, Y., Hunter, A., Beyerlein, I.J., and Koslowski, M.: A phase field dislocation dynamics model for a bicrystal interface system: An investigation into dislocation slip transmission across cube-on-cube interfaces. Int. J. Plast. 79, 293 (2016).
92.Wang, J., Hoagland, R.G., Hirth, J.P., and Misra, A.: Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater. 56, 3109 (2008).
93.Zhang, R.F., Germann, T.C., Liu, X.Y., Wang, J., and Beyerlein, I.J.: Layer size effect on the shock compression behavior of fcc–bcc nanolaminates. Acta Mater. 79, 74 (2014).
94.Huang, S., Beyerlein, I.J., and Zhou, C.: Nanograin size effects on the strength of biphase nanolayered composites. Sci. Rep. 7, 11251 (2017).
95.Mayeur, J.R., Beyerlein, I.J., Bronkhorst, C.A., and Mourad, H.M.: Incorporating interface affected zones into crystal plasticity. Int. J. Plast. 65, 206 (2015).


Related content

Powered by UNSILO

Room temperature deformation mechanisms of Mg/Nb nanolayered composites

  • Milan Ardeljan (a1), Marko Knezevic (a1), Manish Jain (a2), Siddhartha Pathak (a2), Anil Kumar (a3), Nan Li (a4), Nathan A. Mara (a4), J. Kevin Baldwin (a4) and Irene J. Beyerlein (a5)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.