Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T22:36:56.827Z Has data issue: false hasContentIssue false

Role of titanium on the reactive spreading of lead-free solders on alumina

Published online by Cambridge University Press:  03 March 2011

Laurent Gremillard*
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory (MSD-LBNL), Berkeley, California 94720; and Materials Science Department, UMR CNRS 5510, National Institute of Applied Science (GEMPPM-INSA), 69621 Villeurbanne, France
Eduardo Saiz
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory (MSD-LBNL), Berkeley, California 94720
Velimir R. Radmilovic
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory (NCEM-LBNL), Berkeley, California 94720
Antoni P. Tomsia
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory (MSD-LBNL), Berkeley, California 94720
*
a) Address all correspondence to this author. e-mail: laurent.gremillard@insa-lyon.fr
Get access

Abstract

The wetting of Sn3Ag-based alloys on Al2O3 has been studied using the sessile-drop configuration. Small additions of Ti decrease the contact angle of Sn3Ag alloys on alumina from 115° to 23°. Adsorption of Ti-species at the solid–liquid interface prior to reaction is the driving force for the observed decrease in contact angle, and the spreading kinetics is controlled by the kinetics of Ti dissolution into the molten alloy. The addition of Ti increases the transport rates at the solid–liquid interface, resulting in the formation of triple-line ridges that pin the liquid front and promote a wide variability in the final contact angles.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Saiz, E., Cannon, R.M., Tomsia, A.P.: Reactive spreading: Adsorption, ridging and compound formation. Acta Mater. 48, 4449 (2000).CrossRefGoogle Scholar
2.Abtew, M., Selvaduray, M.: Lead-free solders in microelectronics. Mater. Sci. Eng. R 27, 95 (2000).CrossRefGoogle Scholar
3.Saiz, E., Hwang, C.H., Suganuma, K., Tomsia, A.P.: Spreading of Sn–Ag solders on FeNi alloys. Acta Mater. 51, 3185 (2003).CrossRefGoogle Scholar
4.Xian, A.P.: Precursor film of tin-based active solder wetting on ceramics. J. Mater. Sci. 28, 1019 (1993).CrossRefGoogle Scholar
5.Xue, X.M., Wang, J.T., Sui, Z.T.: Wettability and interfacial reaction of alumina and zirconia by reactive silver-indium base alloy at mid-temperatures. J. Mater. Sci. 28, 1317 (1993).Google Scholar
6.Naidich, Y.V., Zhuravljov, V.S., Frumina, N.I.: Wetting of rare-earth element oxides by metallic melts. J. Mater. Sci. 25, 1895 (1990).CrossRefGoogle Scholar
7.Gremillard, L., Saiz, E., Chevalier, J., Tomsia, A.P.: Wetting and strength in the tin-silver-titanium/sapphire system. Z. Metallkd. 95, 261 (2004).CrossRefGoogle Scholar
8.Li, J.G., Chatain, D., Coudurier, L., Eustathopoulos, N.: Wettability of sapphire by Sn–Al alloys. J. Mater. Sci. Lett. 7, 961 (1988).CrossRefGoogle Scholar
9.Tu, K.M., Gusak, A.M., Li, M.: Physics and materials challenges for lead-free solders. J. Appl. Phys. 93, 1335 (2003).CrossRefGoogle Scholar
10.Derby, B., Webster, J.R.P.: Neutron reflection study of the composition of interfaces between titanium-containing active braze alloys and sapphire. Trans. Jpn. Welding Res. Inst. 30, 233 (2001).Google Scholar
11.Gremillard, L.: DropAngle, software, LBNL, (2004), available upon request to the author.Google Scholar
12.Saiz, E., Tomsia, A.P., Cannon, R.M.: Ridging effects on wetting and spreading of liquids on solids. Acta Mater. 46, 2349 (1998).CrossRefGoogle Scholar
13.Kistler, S.F. Hydrodynamics of wetting, in Wettability, edited by Berg, J.C. (Marcel Dekker, New York, 1993), pp. 311430.Google Scholar
14.Saiz, E., Tomsia, A.P.: Atomic dynamics and Marangoni films during liquid-metal spreading. Nat. Mater. 3, 903 (2004).CrossRefGoogle ScholarPubMed
15.Eustathopoulos, N., Koltsov, A., Dumont, M., Hodaj, F.: Influence of Ti on wetting of AlN by Ni-base alloys. Mater. Sci. Eng., A 415, 171 (2006).Google Scholar
16.Mullins, W.W.: The effect of thermal grooving on grain boundary motion. Acta Metall. 6, 414 (1958).CrossRefGoogle Scholar
17.Mullins, W.W.: Grain boundary grooving by volume diffusion. Trans. Metall. Soc. AIME 218, 354 (1960).Google Scholar
18.Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333 (1957).CrossRefGoogle Scholar
19.Mullins, W.W., Shewmon, P.G.: The kinetics of grain boundary grooving in copper. Acta Metall. 7, 163 (1959).CrossRefGoogle Scholar
20.Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. and King, R.C., Jr. (Physical Electronics, Chahnassen, MA, 1995).Google Scholar
21.Oh, W.S., Xu, C., Kim, D.Y., Goodman, D.W.: Preparation and characterization of epitaxial titanium oxide films on Mo(100). J. Vac. Sci. Technol., A 15, 1710 (1997).CrossRefGoogle Scholar
22.Baba, K., Hatada, R.: Preparation and properties of nitrogen and titanium oxide incorporated diamond-like carbon films by plasma source ion implantation. Surf. Coat. Technol. 136, 192 (2001).CrossRefGoogle Scholar
23.Jang, H.K., Whangbo, S.W., Choi, Y.K., Chung, Y.D., Jeong, K., Whang, C.N., Lee, Y.S., Lee, H.S., Choi, J.S., Kim, G.H., Kim, T.K.: Titanium oxide films on Si(100) deposited by e-beam evaporation. J. Vac. Sci. Technol., A 18, 2932 (2000).CrossRefGoogle Scholar
24.Zhang, F., Wolf, G.K., Wang, X., Liu, X.: Surface properties of silver doped titanium oxide films. Surf. Coat. Technol. 148, 65 (2001).CrossRefGoogle Scholar
25.Gao, Y., Liang, Y., Chambers, S.A.: Thermal stability and the role of oxygen vacancy defects in strong metal support interaction—Pt on Nb-doped TiO2(100). Surf. Sci. 365, 638 (1996).CrossRefGoogle Scholar
26.Feng, B., Weng, J., Yang, B.C., Chen, J.Y., Zhao, J.Z., He, L., Qi, S.K., Zhang, X.D.: Surface characterization of titanium and adsorption of bovine serum albumin. Mater. Charact. 49, 129 (2003).CrossRefGoogle Scholar
27.Dean, J.A.: Lange's Handbook of Chemistry, 14th ed. (McGraw-Hill, New York, 1992), pp. 6.88–6.129.Google Scholar
28.Rivollet, I., Chatain, D., Eustathopoulos, N.: Wettability of alumina single crystals with gold and tin between their melting point and 1673 K. Acta Metall. 35, 835 (1987).CrossRefGoogle Scholar
29.Laurent, V., Chatain, D., Chatillon, C., Eustathopoulos, N.: Wettability of monocrystalline alumina by aluminium between its melting point and 1273 K. Acta Metall. 36, 1797 (1988).CrossRefGoogle Scholar
30.Brennan, J.J., Pask, J.A.: Effect of the nature of surfaces on wetting of sapphire by liquid aluminum. J. Am. Ceram. Soc. 51, 569 (1968).CrossRefGoogle Scholar
31.Ricci, E., Passerone, A.: Review—Surface-tension and its relations with adsorption, Vapourization and surface reactivity of liquid-metals. Mater. Sci. Eng., A 161, 31 (1993).CrossRefGoogle Scholar
32.Jung, W., Song, H., Park, S.W., Kim, D.: Variation of contact angles with temperature and time in the Al–Al2O3 system. Metall. Mater. Trans. B 27, 51 (1996).CrossRefGoogle Scholar
33.Eustathopoulos, N., Drevet, B.: Interfacial bonding, wettability and reactivity in metal/oxide systems. J. Phys. III 4, 1865 (1994).Google Scholar
34.Aksay, I.A., Hoge, C.E., Pask, J.A.: Wetting under chemical equilibrium and non-equilibrium conditions. J. Phys. Chem. 78, 1178 (1974).CrossRefGoogle Scholar
35.Yost, F.G.Romig, A.D. Jr. Thermodynamics of wetting by liquid metals, in Electronic Packaging Materials Science II, edited by Jaccodine, R., Jackson, K.A., and Sundahl, R.C. (Mater. Res. Soc. Symp. Proc. 108, Pittsburgh, PA, 1988), p. 385.Google Scholar
36.Ghetta, V., Chatain, D.: Morphologies adopted by Al2O3 single-crystal surfaces in contact with Cu Droplets. J. Am. Ceram. Soc. 85, 961 (2002).CrossRefGoogle Scholar
37.Loehman, R., Hosking, F.M., Gauntt, B., Kotula, P.G., Lu, P.: Reactions of Hf-Ag and Zr–Ag alloys with Al2O3 at elevated temperatures. J. Mater. Sci. 9–10, 2319 (2005).CrossRefGoogle Scholar
38.Meier, A., Chidambaram, P.R., Edwards, G.R.: Modelling of the spreading kinetics of reactive brazing alloys on ceramic substrates: Copper-titanium alloys on polycrystalline alumina. Acta Mater. 46, 4453 (1998).CrossRefGoogle Scholar
39.Mortensen, A., Drevet, B., Eustathopoulos, N.: Kinetics of diffusion-limited spreading of sessile drops in reactive wetting. Scripta Mater. 36, 645 (1997).CrossRefGoogle Scholar
40.Adamson, A.W.: Physical Chemistry of Surfaces (Interscience Publishers, New York, 1963).Google Scholar
41.Saiz, E., Cannon, R.M., Tomsia, A.P.: Energetics and atomic transport at liquid metal/Al2O3 interfaces. Acta Mater. 47, 4209 (1999).CrossRefGoogle Scholar
42.Saiz, E., Tomsia, A.P., Cannon, R.M. Wetting and work of adhesion in oxide/metal systems, in Ceramic Microstructures ’96: Control at the Atomic Level, edited by Tomsia, A.P. and Glaeser, A.M. (Plenum Press, New York, and London, UK, 1998), p. 65.CrossRefGoogle Scholar
43.Dynys, J., Coble, R.L., Coblenz, W.S., Cannon, R.M. Mechanisms of atom transport during initial stage sintering of Al2O3, in Sintering Processes, edited by Kuczynski, G.C. (Plenum Press, New York, 1980), p. 391.CrossRefGoogle Scholar
44.Kubaschewski, O., Alcock, C.B.: Metallurgical Thermochemistry, 1st ed. (Pergamon Press, New York, 1979), pp. 388390.Google Scholar
45.Louet, N Influence of calcia and silica doping on sintering and microstructural evolution of ultrapure alpha-alumina (in French), Ph.D. Thesis, INSA Lyon, France, (2003).Google Scholar
46.Nikolopoulos, P.: Surface, grain-boundary and interfacial energies in Al2O3 and Al2O3–Sn, Al2O3–Co systems. J. Mater. Sci. 20, 3993 (1985).CrossRefGoogle Scholar
47.Metals Reference Book, edited by Smithells, C.J. (Butterworths, London, UK, 1976), p. 939.Google Scholar
48.Yoshihara, K., Nii, K.: Effect of oxygen potential on surface self-diffusion coefficient of silver. J. Jpn. Inst. Met. 42, 492 (1978).CrossRefGoogle Scholar