Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T10:37:11.217Z Has data issue: false hasContentIssue false

The role of radiation in melt stability in zone-melt recrystallization of SOI

Published online by Cambridge University Press:  31 January 2011

J.A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
L.R. Thompson
Affiliation:
Colorado State University, Ft. Collins, Colorado 80523
G.J. Collins
Affiliation:
Colorado State University, Ft. Collins, Colorado 80523
Get access

Abstract

Under circumstances in Zone-Melt-Recrystallization (ZMR) of Si-on-Insulator (SOI) structures where radiative heat loss is significant, the ∼50% decrease in emissivity when Si melts destabilizes the Si molten zone. We have demonstrated this both experimentally using a slowly scanned e-beam line source and numerically with a finite-element computational simulation. The resulting instability narrows the process window and tightens requirements on beam control and background heating uniformity, both for e-beam ZMR systems and optically-coupled systems such as a graphite strip heater.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lam, H.W., Pinizzotto, R. F., and Tasch, A. F., Jr., J. Electrochem. Soc. 128, 1981 (1981).CrossRefGoogle Scholar
2Knapp, J. A., J. Appl. Phys. 58, 2584 (1985).CrossRefGoogle Scholar
3Geis, M.W., Chen, C.K., and Smith, H.I., J. Appl. Phys. 42, 555 (1986).Google Scholar
4Ramesh, S. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 107, p. 225.Google Scholar
5Bosh, M. A. and Lemons, R. A., Phys. Rev. Lett. 47, 1151 (1981).CrossRefGoogle Scholar
6Hawkins, W. G. and Biegelsen, D. K., Appl. Phys. Lett. 42, 358 (1983).CrossRefGoogle Scholar
7Grigoropoulos, C. P., Buckholz, R. H., and Domoto, G. A., J. Appl. Phys. 59, 454 (1986).CrossRefGoogle Scholar
8Moore, C.A., Meyer, J.D., Fukumoto, J.T., Szluk, N.J., Thompson, L.R., Knapp, J.A., Collins, G. J., and Berkman, S. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 107, p. 207.CrossRefGoogle Scholar
9Thompson, L.R., Knapp, J.A., Moore, C.A., and Collins, G. J. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 107, p. 195.Google Scholar
10 The computational approach is a simpler version of the classical explicit method described in Ref. 2.Google Scholar
11Chen, C.K. and Im, J. S. (to be published).Google Scholar