Skip to main content Accessibility help

Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor

  • Shanmugam Parthiban (a1) and Jang-Yeon Kwon (a1)


In this review, we discuss the recent developments of high-performance and improved-stability of indium-oxide-based transparent amorphous-oxide semiconductor (TAOS) thin-film transistors (TFTs) properties. TAOSs are widely explored with the aim of producing high-performance semiconductors suitable for the channel layer of TFTs which enable to survive under light and thermal-bias-induced stress conditions. Numerous TAOSs have been invented with some improved performance characteristics of TFTs such as mobility, light and thermal induced bias stress. However, there has been no clear elucidation of the mechanisms driving these improvements. In this review, we discuss the progression of innovations of high performance indium-oxide-based TAOS TFTs from its first reported amorphous indium gallium zinc oxide (a-IGZO) to present, and their properties that are correlated with the Lewis acid strength (L) and bonding strength of dopant and oxygen as a carrier suppressor and strong binder. The proposed mechanism can be practical to develop novel TAOS TFTs with high mobility and stability.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488 (2004).
2. Kamiya, T. and Hosono, H.: Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2(1), 15 (2010).
3. Hosono, H.: Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 352(9), 851 (2006).
4. Nomura, K., Takagi, A., Kamiya, T., Ohta, H., Hirano, M., and Hosono, H.: Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 45, 4303 (2006).
5. Kamiya, T., Nomura, K., and Hosono, H.: Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J. Disp. Technol. 5(12), 468 (2009).
6. Kamiya, T., Nomura, K., and Hosono, H.: Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 11(4), 044305 (2010).
7. Jeong, J.K.: The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond. Sci. Technol. 26(3), 034008 (2011).
8. Wager, J.F.: Transparent electronics. Science 300(5623), 1245 (2003).
9. Carcia, P., McLean, R., Reilly, M., and Nunes, G.: Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 82(7), 1117 (2003).
10. Yabuta, H., Kaji, N., Hayashi, R., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., and Hosono, H.: Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits. Appl. Phys. Lett. 97(7), 072111 (2010).
11. Chiang, H., Wager, J., Hoffman, R., Jeong, J., and Keszler, D.A.: High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86(1), 013503 (2005).
12. Lim, W., Jang, J.H., Kim, S-H., Norton, D., Craciun, V., Pearton, S., Ren, F., and Shen, H.: High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Appl. Phys. Lett. 93(8), 082102 (2008).
13. Dehuff, N., Kettenring, E., Hong, D., Chiang, H., Wager, J., Hoffman, R., Park, C-H., and Keszler, D.: Transparent thin-film transistors with zinc indium oxide channel layer. J. Appl. Phys. 97(6), 064505 (2005).
14. Kumomi, H., Yaginuma, S., Omura, H., Goyal, A., Sato, A., Watanabe, M., Shimada, M., Kaji, N., Takahashi, K., and Ofuji, M.: Materials, devices, and circuits of transparent amorphous-oxide semiconductor. J. Disp. Technol. 5(12), 531 (2009).
15. Jeong, S. and Moon, J.: Low-temperature, solution-processed metal oxide thin film transistors. J. Mater. Chem. C 22(4), 1243 (2012).
16. Zilberberg, K., Meyer, J., and Riedl, T.: Solution processed metal-oxides for organic electronic devices. J. Mater. Chem. C 1(32), 4796 (2013).
17. Meena, J.S., Chu, M-C., Chang, Y-C., You, H-C., Singh, R., Liu, P-T., Shieh, H-P.D., Chang, F-C., and Ko, F-H.: Effect of oxygen plasma on the surface states of ZnO films used to produce thin-film transistors on soft plastic sheets. J. Mater. Chem. C 1(40), 6613 (2013).
18. Yang, W., Song, K., Jeong, Y., Jeong, S., and Moon, J.: Solution-deposited Zr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors. J. Mater. Chem. C 1(27), 4275 (2013).
19. Kang, T.S., Kim, T.Y., Lee, G.M., Sohn, H.C., and Hong, J.P.: Highly stable solution-processed ZnO thin film transistors prepared via a simple Al evaporation process. J. Mater. Chem. C 2(8), 1390 (2014).
20. Park, S.Y., Kim, K., Lim, K-H., Kim, B.J., Lee, E., Cho, J.H., and Kim, Y.S.: The structural, optical and electrical characterization of high-performance, low-temperature and solution-processed alkali metal-doped ZnO TFTs. J. Mater. Chem. C 1(7), 1383 (2013).
21. Banger, K., Yamashita, Y., Mori, K., Peterson, R., Leedham, T., Rickard, J., and Sirringhaus, H.: Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat. Mater. 10(1), 45 (2010).
22. Fortunato, E., Barquinha, P., and Martins, R.: Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 24(22), 2945 (2012).
23. Presley, R., Munsee, C., Park, C., Hong, D., Wager, J., and Keszler, D.: Tin oxide transparent thin-film transistors. J. Phys. D: Appl. Phys. 37(20), 2810 (2004).
24. Noh, J.H., Ryu, S.Y., Jo, S.J., Kim, C.S., Sohn, S-W., Rack, P.D., Kim, D-J., and Baik, H.K.: Indium oxide thin-film transistors fabricated by RF sputtering at room temperature. IEEE Electron Device Lett. 31(6), 567 (2010).
25. Choi, H-S., Jeon, S., Kim, H., Shin, J., Kim, C., and Chung, U-I.: The impact of active layer thickness on low-frequency noise characteristics in InZnO thin-film transistors with high mobility. Appl. Phys. Lett. 100(17), 173501 (2012).
26. Feng, Z.C.: Handbook of Zinc Oxide and Related Materials: Devices and Nano-Engineering (CRC Press, Boca Raton, FL, 2012).
27. Jeong, J.K.: Photo-bias instability of metal oxide thin film transistors for advanced active matrix displays. J. Mater. Res. 28(16), 2071 (2013).
28. Facchetti, A. and Marks, T.J.: Transparent Electronics (Wiley Online Library, New York, NY, 2010).
29. King, P. and Veal, T.D.: Conductivity in transparent oxide semiconductors. J. Phys.: Condens. Matter 23(33), 334214 (2011).
30. Castañeda, L.: Present status of the development and application of transparent conductors oxide thin solid films. Mater. Sci. Appl. 2(9), 1233 (2011).
31. Calnan, S. and Tiwari, A.: High mobility transparent conducting oxides for thin film solar cells. Thin Solid Films 518(7), 1839 (2010).
32. Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35 (2005).
33. Grundmann, M., Frenzel, H., Lajn, A., Lorenz, M., Schein, F., and von Wenckstern, H.: Transparent semiconducting oxides: Materials and devices. Phys. Status Solidi A 207(6), 1437 (2010).
34. Parthiban, S., Ramamurthi, K., Elangovan, E., Martins, R., and Fortunato, E.: Spray deposited molybdenum doped indium oxide thin films with high near infrared transparency and carrier mobility. Appl. Phys. Lett. 94(21), 212101 (2009).
35. Chong, E., Jo, K.C., and Lee, S.Y.: High stability of amorphous hafnium-indium-zinc-oxide thin film transistor. Appl. Phys. Lett. 96(15), 152102 (2010).
36. Kim, C-J., Kim, S., Lee, J-H., Park, J-S., Kim, S., Park, J., Lee, E., Lee, J., Park, Y., and Kim, J.H.: Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Appl. Phys. Lett. 95(25), 252103 (2009).
37. Fortunato, E., Pereira, L., Barquinha, P., Botelho do Rego, A.M., Gonçalves, G., Vilà, A., Morante, J.R., and Martins, R.F.: High mobility indium free amorphous oxide thin film transistors. Appl. Phys. Lett. 92(22), 222103 (2008).
38. Cho, D-H., Yang, S., Byun, C., Ryu, M.K., Park, S-H.K., Hwang, C-S., Yoon, S.M., and Chu, H-Y.: Transparent oxide thin-film transistors composed of Al and Sn-doped zinc indium oxide. IEEE Electron Device Lett. 30(1), 48 (2009).
39. Yang, S., Cho, D-H., Ryu, M.K., Park, S-H.K., Hwang, C.-S., Jang, J., and Jeong, J.K.: Improvement in the photon-induced bias stability of Al–Sn–Zn–In–O thin film transistors by adopting AlOx passivation layer. Appl. Phys. Lett. 96(21), 213511 (2010).
40. Cho, D-H., Yang, S., Byun, C., Shin, J., Ryu, M.K., Park, S-H.K., Hwang, C-S., Chung, S.M., Cheong, W-S., and Yoon, S.M.: Transparent Al–Zn–Sn–O thin film transistors prepared at low temperature. Appl. Phys. Lett. 93(14), 142111 (2008).
41. Yang, B.S., Huh, M.S., Oh, S., Lee, U.S., Kim, Y.J., Oh, M.S., Jeong, J.K., Hwang, C.S., and Kim, H.J.: Role of ZrO2 incorporation in the suppression of negative bias illumination-induced instability in Zn–Sn–O thin film transistors. Appl. Phys. Lett. 98(12), 122110 (2011).
42. Park, J-S., Kim, T-W., Stryakhilev, D., Lee, J-S., An, S-G., Pyo, Y-S., Lee, D-B., Mo, Y.G., Jin, D-U., and Chung, H.K.: Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl. Phys. Lett. 95(1), 013503 (2009).
43. Allee, D.R., Clark, L.T., Vogt, B.D., Shringarpure, R., Venugopal, S.M., Uppili, S.G., Kaftanoglu, K., Shivalingaiah, H., Li, Z.P., and Ravindra Fernando, J.: Circuit-level impact of a-Si: H thin-film-transistor degradation effects. IEEE Trans. Electron Devices 56(6), 1166 (2009).
44. Hsu, H-H., Chang, C-Y., and Cheng, C-H.: A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE Electron Device Lett. 34(6), 768 (2013).
45. Lee, K-H., Jung, J.S., Son, K.S., Park, J.S., Kim, T.S., Choi, R., Jeong, J.K., Kwon, J-Y., Koo, B., and Lee, S.: The effect of moisture on the photon-enhanced negative bias thermal instability in Ga–In–Zn–O thin film transistors. Appl. Phys. Lett. 95(23), 232106 (2009).
46. Kwon, J-Y., Lee, D-J., and Kim, K-B.: Review paper: Transparent amorphous oxide semiconductor thin film transistor. Electron. Mater. Lett. 7(1), 1 (2011).
47. Ji, K.H., Kim, J-I., Mo, Y-G., Jeong, J.H., Yang, S., Hwang, C-S., Park, S-H.K., Ryu, M-K., Lee, S-Y., and Jeong, J.K.: Comparative study on light-induced bias stress instability of IGZO transistors with SiNx and SiO2 gate dielectrics. IEEE Electron Device Lett. 31(12), 1404 (2010).
48. Oh, H., Yoon, S-M., Ryu, M.K., Hwang, C-S., Yang, S., and Park, S-H.K.: Photon-accelerated negative bias instability involving subgap states creation in amorphous In–Ga–Zn–O thin film transistor. Appl. Phys. Lett. 97(18), 183502 (2010).
49. Chowdhury, M.D.H., Migliorato, P., and Jang, J.: Light induced instabilities in amorphous indium–gallium–zinc–oxide thin-film transistors. Appl. Phys. Lett. 97(17), 173506 (2010).
50. Ji, K.H., Kim, J-I., Jung, H.Y., Park, S.Y., Choi, R., Kim, U.K., Hwang, C.S., Lee, D., Hwang, H., and Jeong, J.K.: Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Appl. Phys. Lett. 98(10), 103509 (2011).
51. Ryu, B., Noh, H-K., Choi, E-A., and Chang, K.: O-vacancy as the origin of negative bias illumination stress instability in amorphous In–Ga–Zn–O thin film transistors. Appl. Phys. Lett. 97(2), 022108 (2010).
52. Nathan, A., Lee, S., Jeon, S., and Robertson, J.: Amorphous oxide semiconductor TFTs for displays and imaging. J. Disp. Technol. PP(99), 1 (2013).
53. Kim, H-S., Jeon, S.H., Park, J.S., Kim, T.S., Son, K.S., Seon, J-B., Seo, S-J., Kim, S-J., Lee, E., and Chung, J.G.: Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors. Sci. Rep. 3, 1459 (2013).
54. Park, J.S., Kim, K., Park, Y.G., Mo, Y.G., Kim, H.D., and Jeong, J.K.: Novel ZrInZnO thin-film transistor with excellent stability. Adv. Mater. 21(3), 329 (2009).
55. Hennek, J.W., Smith, J., Yan, A., Kim, M-G., Zhao, W., Dravid, V.P., Facchetti, A., and Marks, T.J.: Oxygen “getter” effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors. J. Am. Chem. Soc. 135(29), 10729 (2013).
56. Chong, H.Y., Han, K.W., No, Y.S., and Kim, T.W.: Effect of the Ti molar ratio on the electrical characteristics of titanium-indium-zinc-oxide thin-film transistors fabricated by using a solution process. Appl. Phys. Lett. 99(16), 161908 (2011).
57. Aikawa, S., Nabatame, T., and Tsukagoshi, K.: Effects of dopants in InOx-based amorphous oxide semiconductors for thin-film transistor applications. Appl. Phys. Lett. 103(17), 172105 (2013).
58. Honglei, L., Mingyue, Q., and Qun, Z.: Influence of tungsten doping on the performance of indium-zinc-oxide thin-film transistors. IEEE Electron Device Lett. 34(10), 1268 (2013).
59. Aikawa, S., Darmawan, P., Yanagisawa, K., Nabatame, T., Abe, Y., and Tsukagoshi, K.: Thin-film transistors fabricated by low-temperature process based on Ga-and Zn-free amorphous oxide semiconductor. Appl. Phys. Lett. 102(10), 102101 (2013).
60. Park, J.C., Kim, S.W., Kim, C.J., and Lee, H-N.: The effects of gadolinium incorporation into indium–zinc–oxide thin-film transistors. IEEE Electron Device Lett. 33(6), 809 (2012).
61. Kim, S.J., Gunduz, B., Yoon, D.H., Kim, H.J., Al-Ghamdi, A.A., and Yakuphanoglu, F.: Photofield effect and photoresponse properties of the transparent oxide-based BaInZnO thin-film transistors. Sens. Actuators, A 193, 1 (2013).
62. Kim, S.J., Kim, D.L., Rim, Y.S., Jeong, W.H., Kim, D.N., Yoon, D.H., and Kim, H.J.: The formation of InZnO lattices incorporating Ba for thin-film transistors using a solution process. J. Cryst. Growth 326(1), 163 (2011).
63. Banger, K.K., Peterson, R.L., Mori, K., Yamashita, Y., Leedham, T., and Sirringhaus, H.: High performance, low temperature solution-processed barium and strontium doped oxide thin film transistors. Chem. Mater. 26(2), 11951203 (2013).
64. Yoon, D.H., Kim, S.J., Jeong, W.H., Kim, D.L., Rim, Y.S., and Kim, H.J.: Investigation of solution-processed amorphous SrInZnO thin film transistors. J. Cryst. Growth 326(1), 171 (2011).
65. Chong, E., Chun, Y.S., and Lee, S.Y.: Amorphous silicon–indium–zinc oxide semiconductor thin film transistors processed below 150° C. Appl. Phys. Lett. 97(10), 102102 (2010).
66. Chong, E., Kim, S.H., and Lee, S.Y.: Role of silicon in silicon-indium-zinc-oxide thin-film transistor. Appl. Phys. Lett. 97(25), 252112 (2010).
67. Choi, Y., Kim, G.H., Jeong, W.H., Bae, J.H., Kim, H.J., Hong, J-M., and Yu, J-W.: Carrier-suppressing effect of scandium in InZnO systems for solution-processed thin film transistors. Appl. Phys. Lett. 97(16), 162102 (2010).
68. Ting, C-C., Chang, S-P., Li, W-Y., and Wang, C-H.: Enhanced performance of indium zinc oxide thin film transistor by yttrium doping. Appl. Surf. Sci. 284, 397 (2013).
69. Lee, Y-J., Kim, J-H., and Kang, J.: Characteristics of Y2O3-doped indium zinc oxide films grown by radio frequency magnetron co-sputtering system. Thin Solid Films 534, 599 (2013).
70. Shin, H.S., Kim, G.H., Jeong, W.H., Du Ahn, B., and Kim, H.J.: Electrical properties of yttrium-indium-zinc-oxide thin film transistors fabricated using the sol-gel process and various yttrium compositions. Jpn. J. Appl. Phys. 49(3), (2010).
71. Park, J.C., Kim, S.W., Kim, C.J., and Lee, H-N.: Low-temperature fabrication and characteristics of lanthanum indium zinc oxide thin-film transistors. IEEE Electron Device Lett. 33(5), 685 (2012).
72. Park, H-W., Kim, B-K., Park, J-S., and Chung, K-B.: Device performance and bias instability of Ta doped InZnO thin film transistor as a function of process pressure. Appl. Phys. Lett. 102(10), 102102 (2013).
73. Lan, L., Xiong, N., Xiao, P., Li, M., Xu, H., Yao, R., Wen, S., and Peng, J.: Enhancement of bias and illumination stability in thin-film transistors by doping InZnO with wide-band-gap Ta2O5 . Appl. Phys. Lett. 102, 242102 (2013).
74. Kim, G.H., Jeong, W.H., Du Ahn, B., Shin, H.S., Kim, H.J., Kim, H.J., Ryu, M-K., Park, K-B., Seon, J-B., and Lee, S-Y.: Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors. Appl. Phys. Lett. 96(16), 163506 (2010).
75. Koo, J., Kang, T., Kim, T., and Hong, J.: Electrical and optical characteristics of co-sputtered amorphous Ce-doped indium-zinc-oxide thin-film transistors. J. Korean Phys. Soc. 62(3), 527 (2013).
76. Jang, K., Raja, J., Kim, J., Lee, Y., Kim, D., and Yi, J.: High field-effect mobility amorphous InSnZnO thin-film transistors with low carrier concentration and oxygen vacancy. Electron. Lett. 49(16), (2013).
77. Kerr, J.: CRC handbook of chemistry and physics 1999–2000: a ready-reference book of chemical and physical data. CRC Handbook of Chemistry and Physics, 81st ed.; CRC Press, Boca Raton, FL (2000).
78. Miura, K., Ueda, T., Nakano, S., Saito, N., Hara, Y., Sugi, K., Sakano, T., Yamaguchi, H., Amemiya, I., and Akimoto, K.: 4.1: Low-temperature-processed IGZO TFTs for flexible AMOLED with integrated gate driver circuits. In SID Symposium Digest of Technical Papers, Vol. 42, Wiley Online Library, New York, NY, 2011; p. 21.
79. Seo, J-S., Jeon, J-H., Hwang, Y.H., Park, H., Ryu, M., Park, S-H.K., and Bae, B-S.: Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci. Rep. 3, 2085 (2013).
80. Campet, G., Han, S.D., Wen, S.J., Manaud, J.P., Portier, J., Xu, Y., and Salardenne, J.: The electronic effect of Ti4+, Zr4+ and Ge4+ dopings upon the physical properties of In2O3 and Sn-doped In2O3 ceramics: Application to new highly-transparent conductive electrodes. Mater. Sci. Eng., B 19(3), 285 (1993).
81. Kang, S-B., Lim, J-W., Lee, S., Kim, J-J., and Kim, H-K.: Transparent indium oxide films doped with high Lewis acid strength Ge dopant for phosphorescent organic light-emitting diodes. J. Phys. D: Appl. Phys. 45(32), 325102 (2012).
82. Lee, H-M., Kang, S-B., Chung, K-B., and Kim, H-K.: Transparent and flexible amorphous In-Si-O films for flexible organic solar cells. Appl. Phys. Lett. 102(2), 021914 (2013).
83. Kima, J.H., Kangb, S-B., Leeb, J-H., Shinb, Y-H., Shinb, H-S., Kwonc, D-G., Seong, T-Y., Parkc, Y., Nad, S-I., and Kimb, H-K.: Buffer and anode-integrated WO3-doped In2O3 electrodes for PEDOT: PSS-free organic photovoltaics. Org. Electron. 14, 1305 (2013).
84. Cho, D-Y., Chung, K-B., Na, S-I., and Kim, H-K.: Effect of Zr doping power on the electrical, optical and structural properties of In–Zr–O anodes for P3HT: PCBM thin-film organic solar cells. J. Phys. D: Appl. Phys. 46(29), 295305 (2013).
85. Lee, J-H. and Kim, H-K.: Transparent Ti-doped In2O3 films grown by linear facing target sputtering for organic solar cells. J. Korean Phys. Soc. 63(6), 1160 (2013).
86. Jeong, J-A., Jeon, Y-J., Kim, S-S., Kim, B.K., Chung, K-B., and Kim, H-K.: Simple brush-painting of Ti-doped In2O3 transparent conducting electrodes from nano-particle solution for organic solar cells. Sol. Energy Mater. Sol. Cells 122(0), 241 (2014).
87. Kim, D-J., Kim, B-S., and Kim, H-K.: Effect of thickness and substrate temperature on the properties of transparent Ti-doped In2O3 films grown by direct current magnetron sputtering. Thin Solid Films 547(0), 225 (2013).
88. Kim, J.H., Seong, T-Y., Na, S-I., Chung, K-B., Lee, H-M., and Kim, H-K.: Highly transparent Nb-doped indium oxide electrodes for organic solar cells. J. Vac. Sci. Technol., A 32(2), 021202 (2014).
89. Kim, J.H., Shin, Y.-H., Seong, T.Y., Na, S.I., and Kim, H.K.: Rapid thermal annealed WO3-doped In2O3 films for transparent electrodes in organic photovoltaics. J. Phys. D: Appl. Phys. 45(39), 395104 (2012).
90. Lim, J-W., Jun Kang, S., Lee, S., Kim, J-J., and Kim, H-K.: Transparent Ti-In-Sn-O multicomponent anodes for highly efficient phosphorescent organic light emitting diodes. J. Appl. Phys. 112(2) (2012).
91. Lee, K-S., Lim, J-W., Kim, H-K., Alford, T.L., and Jabbour, G.E.: Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics. Appl. Phys. Lett. 100(21), 213302 (2012).
92. Kang, S-B., Lim, J-W., Na, S-I., and Kim, H-K.: Highly near-infrared transparent GeO2-doped In2O3 electrodes for bulk heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells 107(0), 373 (2012).
93. Parthiban, S., Elangovan, E., Ramamurthi, K., Martins, R., and Fortunato, E.: Investigations on high visible to near infrared transparent and high mobility Mo doped In2O3 thin films prepared by spray pyrolysis technique. Sol. Energy Mater. Sol. Cells 94(3), 406 (2010).
94. Parthiban, S., Gokulakrishnan, V., Elangovan, E., Goncalves, G., Ramamurthi, K., Fortunato, E., and Martins, R.: High mobility and visible–near infrared transparent titanium doped indium oxide thin films produced by spray pyrolysis. Thin Solid Films 524, 268 (2012).
95. Zhang, Y.: Electronegativities of elements in valence states and their applications. 1. Electronegativities of elements in valence states. Inorg. Chem. 21(11), 3886 (1982).
96. Shannon, R.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751 (1976).
97. Dean, J.A.: Lange's Handbook of Chemistry (McGraw-Hill, 1985).

Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor

  • Shanmugam Parthiban (a1) and Jang-Yeon Kwon (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed