Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T09:22:57.089Z Has data issue: false hasContentIssue false

Role of beam divergence and ion-to-molecule flux ratio in ion-beam-assisted deposition texturing of MgO

Published online by Cambridge University Press:  03 March 2011

Alp T. Findikoglu*
Affiliation:
Superconductivity Technology Center, MS T004, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Sascha Kreiskott
Affiliation:
Superconductivity Technology Center, MS T004, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Paul M. te Riele
Affiliation:
Superconductivity Technology Center, MS T004, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Vladimir Matias
Affiliation:
Superconductivity Technology Center, MS T004, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a)Address all correspondence to this author. e-mail: findik@lanl.gov
Get access

Abstract

The effect of process conditions on the biaxial texture of MgO films grown by ion-beam-assisted deposition (IBAD) was studied. The texture showed a strong dependence on the Ar+/MgO flux ratio, but a weak dependence on the divergence of Ar+ beam. One hundred-nanometer-thick epi-MgO on less than 10-nm-thick textured IBAD-MgO films that were grown on 7-nm-thick Y2O3 layers on fused silica, metal alloy tape, and polished Si substrates showed biaxial texture with in- and out-of-plane orientation distributions of less than 4° and 2°, respectively. These results strengthen the notion that the IBAD technique could serve as a universal technological process to integrate amorphous and polycrystalline substrates with various oxide and semiconductor films that need to be grown with good biaxial texture.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Iijima, Y., Tanabe, N., Kohno, O. and Ikeno, Y.: Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
2Reade, R.P., Berdahl, P., Russo, R.E. and Garrison, S.M.: Appl. Phys. Lett. 61, 2231 (1992).CrossRefGoogle Scholar
3Wu, X.D., Foltyn, S.R., Arendt, P., Townsend, J., Adams, C., Campbell, I.H., Tiwari, P., Coulter, Y. and Peterson, D.E.: Appl. Phys. Lett. 65, 1961 (1994).CrossRefGoogle Scholar
4Foltyn, S.R., Arendt, P.N., Dowden, P.C., DePaula, R.F., Groves, J.R., Coulter, J.Y., Jia, Q.J., Maley, M.P. and Peterson, D.E.: IEEE Trans. Appl. Superconduct. 9, 1519 (1999).CrossRefGoogle Scholar
5Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H. and Hammond, R.H.: Appl. Phys. Lett. 71, 2955 (1997).CrossRefGoogle Scholar
6Groves, J.R., Arendt, P.N., Foltyn, S.R., DePaula, R.F., Wang, C.P. and Hammond, R.H.: IEEE Trans. Appl. Superconduct. 9, 1964 (1999).CrossRefGoogle Scholar
7Willis, J.O., Arendt, P.N., Foltyn, S.R., Jia, Q.J., Groves, J.R., DePaula, R.F., Dowden, P.C., Peterson, E.J., Holesinger, T.G. and Coulter, J.Y.: Physica C 335, 73 (2000).CrossRefGoogle Scholar
8Finnemore, D.K., Gray, K.E., Maley, M.P., Welch, D.O., Christen, D.K. and Kroeger, D.M.: Physica C 320, 1 (1999).CrossRefGoogle Scholar
9Dimos, D., Chaudhari, P., Mannhart, J. and Legoues, F.K.: Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
10Hirvonen, J.K.: Mater. Sci. 6, 215 (1991).Google Scholar
11Brewer, R.T., Atwater, H.A., Groves, J.R. and Arendt, P.N.: J. Appl. Phys. 93, 205 (2003).CrossRefGoogle Scholar
12Groves, J.R., Yashar, P.C., Arendt, P.N., DePaula, R.F., Peterson, E.J. and Fitzsimmons, M.R.: Physica C 355, 293 (2001).CrossRefGoogle Scholar
13Groves, J.R., Arendt, P.N., Kung, H., Foltyn, S.R., DePaula, R.F., Emmert, L.A. and Storer, J.G.: IEEE Trans. Appl. Superconduct. 11, 2822 (2001).CrossRefGoogle Scholar
14Dong, L., Zepeda-Ruiz, L.A. and Srolovitz, D.J.: J. Appl. Phys. 89, 4105 (2001).CrossRefGoogle Scholar
15Zepeda-Ruiz, L.A. and Srolovitz, D.J.: J. Appl. Phys. 91, 10169 (2002).CrossRefGoogle Scholar
16Huhne, R., Fahler, S., Holzapfel, B., Oertel, C.G., Schultz, L. and Skrotzki, W.: Physica C 372, 825 (2002).CrossRefGoogle Scholar
17Arendt, P.N. (unpublished).Google Scholar
18Kaufman, H.R. and Robinson, R.S.: Operation of Broad-Beam Sources (Commonwealth Scientific Corporation, Alexandria, Virginia, 1987).Google Scholar
19Kahn, J.R., Kaufman, H.R., Phillips, C.A. and Robinson, R.S.: J. Vac. Sci. Technol. A 14, 2106 (1996).CrossRefGoogle Scholar
20Srikant, V., Speck, J.S. and Clarke, D.R.: J. Appl. Phys. 82, 4286 (1997).CrossRefGoogle Scholar
21Specht, E.D., Goyal, A., Lee, D.F., List, F.A., Kroeger, D.M., Paranthaman, M., Williams, R.K. and Christen, D.K.: Supercond. Sci. Technol. 11, 945 (1998).CrossRefGoogle Scholar