Skip to main content Accessibility help

Role of Adhesive Interlayer in Transverse Fracture of Brittle Layer Structures

  • Herzl Chai (a1) and Brian Lawn (a2)


The role of a soft adhesive interlayer in determining critical conditions for fracture in brittle layer structures from indentation with hard spheres is investigated. A model transparent trilayer system consisting of a glass plate overlayer (thickness range 80 μm to 2 mm) joined to a glass plate underlayer (thickness 5.6 mm) by an epoxy adhesive (thickness range 5 μm to 8 mm), loaded at its top surface with a hard tungsten carbide sphere (radius 3.96 mm), facilitates in situ observations of the crack initiation and propagation. Whereas in bulk glass fracture occurs by inner Hertzian cone cracking immediately outside the contact circle, the soft adhesive allows the overlayer glass plate to flex, initiating additional transverse fracture modes within the overlayer: downward-extending outer ring cracks at the top glass surface well outside the contact, and upward-extending radial cracks at the bottom glass surface (i.e., at the glass/adhesive interface) on median planes containing the contact axis. The top and bottom surfaces of the glass overlayers are given selective prebonding abrasion treatments to ensure uniform flaw states, so as to enable accurate comparisons between crack initiation conditions. The adhesive bonding is strong enough to preclude delamination in our layer system. Of the three transverse crack systems, the subsurface radials generates most easily in systems with large adhesive thicknesses (and smaller overlayer thicknesses). Semi-empirical relations are specified for the dependence of the critical loads for radial and ring cracking on adhesive as well as overlayer thickness, based on the assumption that crack initiation occurs when the maximum tensile stresses in the flexing glass plate exceed the bulk strength of the (abraded) glass. Coupled with the traditional “Auerbach's law” for cone crack initiation, these relations afford a basis for the construction of simple design diagrams for brittle layer systems joined by adhesives.



Hide All
1.Gordon, J.E., The New Science of Strong Materials (Penguin, Harmondsworth, United Kingdom, 1968).
2.Clegg, W.J., Kendall, K., Alford, N.M., Button, T.W., and Birchall, J.D., Nature 347, 455 (1991).
3.Folsom, C.A., Zok, F.W., and Lange, F.F., J. Am. Ceram. Soc. 77, 689 (1994).
4.Folsom, C.A., Zok, F.W., and Lange, F.F., J. Am. Ceram. Soc. 77, 2081 (1994).
5.Swain, M.V. and Mencik, J., Thin Solid Films 253, 204 (1994).
6.Diao, D.F., Kato, K., and Hokkirigawa, K., Trans ASME J. Tribology 116, 860 (1994).
7.An, L., Chan, H.M., Padture, N.P., and Lawn, B.R., J. Mater. Res. 11, 204 (1996).
8.Liu, H., Lawn, B.R., and Hsu, S.M., J. Am. Ceram. Soc. 79, 1009 (1996).
9.Pajares, A., Wei, J., Lawn, B.R., Padture, N.P., and Berndt, C.C., Mater. Sci. Eng. A 208, 158 (1996).
10.Wuttiphan, S., Lawn, B.R., and Padture, N.P., J. Am. Ceram. Soc. 79, 634 (1996).
11.Fischer-Cripps, A.C., Lawn, B.R., Pajares, A., and Wei, L., J. Am. Ceram. Soc. 79, 2619 (1996).
12.Lardner, T.J., Ritter, J.E., and Zhu, G-Q., J. Am. Ceram. Soc. 80, 1851 (1997).
13.Chan, H.M., Ann. Rev. Mater. Sci. 27, 249 (1997).
14.Lee, K.S., Wuttiphan, S., Hu, X.Z., Lee, S.K., and Lawn, B.R., J. Am. Ceram. Soc. 81, 571 (1998).
15.Lee, K.S., Lee, S.K., Lawn, B.R., and Kim, D.K., J. Am. Ceram. Soc. 81, 2394 (1998).
16.Jung, Y.G., Wuttiphan, S., Peterson, I.M., and Lawn, B.R., J. Dent. Res. 78, 887 (1999).
17.Lawn, B.R., J. Am. Ceram. Soc. 81, 1977 (1998).
18.Pajares, A., Wei, L., Lawn, B.R., and Berndt, C.C., J. Am. Ceram. Soc. 79, 1907 (1996).
19.Chai, H. and Lawn, B.R., J. Mater. Res. 14, 3805 (1999).
20.Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells (McGraw-Hill, New York, 1959), Chap. 8.
21.Frank, F.C. and Lawn, B.R., Proc. Roy. Soc. Lond. A 299, 291 (1967).
22.Lawn, B.R. and Wilshaw, T.R., J. Mater. Sci. 10, 1049 (1975).
23.Lawn, B.R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, United Kingdom, 1993), Chap. 8.
24.Wiederhorn, S.M., J. Am. Ceram. Soc. 52, 99 (1969).
25.Lawn, B.R. and Evans, A.G., J. Mater. Sci. 12, 2195 (1977).
26.Lawn, B.R. and Marshall, D.B., J. Am. Ceram. Soc. 62, 347 (1979).
27.Shaw, M.C., Marshall, D.B., Dadkhah, M.S., and Evans, A.G., Acta Metall. 41, 3311 (1993).
28.Zhao, H., Hu, X.Z., Bush, M.B., and Lawn, B.R., J. Mater. Res. 15, 676 (2000).
29.Komvopolous, K., ASME J. Tribology 111, 340 (1989).
30.Montmitonnet, P., Edinger, M.L., and Felder, E., ASME J. Tribology 115, 15 (1993).
31.Bennison, S.J., Jagota, A., and Smith, C.A., J. Am. Ceram. Soc. 82, 1761 (1999).

Related content

Powered by UNSILO

Role of Adhesive Interlayer in Transverse Fracture of Brittle Layer Structures

  • Herzl Chai (a1) and Brian Lawn (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.