Skip to main content Accessibility help

Rheological properties of HDPE/chitosan composites modified with PE-g-MA

  • Poliana S. Lima (a1), Rebecca S.F. Brito (a1), Bárbara F.F. Santos (a1), Albaniza A. Tavares (a1), Pankaj Agrawal (a1), Daniela L.A.C.S. Andrade (a1), Renate M.R. Wellen (a2), Eduardo L. Canedo (a1) and Suédina M.L. Silva (a1)...


The rheological behavior of composites made with high-density polyethylene (HDPE) and chitosan was studied. Composites were prepared by melt processing in a laboratory internal mixer. Maleic anhydride grafted HDPE (PE-g-MA) was used as compatibilizer to enhance the dispersion of chitosan in the HDPE matrix. Different percentages of chitosan and compatibilizer (up to a maximum of 25 phr) were added into HDPE to prepare composites. Characterization of the composites with parallel plate rheometer and laboratory internal mixer revealed that the presence of chitosan increases the complex viscosity, loss modulus, storage modulus and the torque (i.e., melt viscosity), and the combination chitosan/compatibilizer has a similar, if slighter, effect. At higher filler levels it is clear that the PE-g-MA affected the microstructure of the compounds, possibly increasing matrix–filler interactions and acting as an effective compatibilizer.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
Contributing Editor: Sarah Morgan



Hide All
1. Peacock, A.: Handbook of Polyethylene: Structures: Properties, and Applications (CRC Press, New York, 2000).
2. Vasile, C. and Pascu, M.: Practical Guide to Polyethylene (Rapra Technology Limited, Shawbury, 2005).
3. Malpass, D.B.: Introduction to Industrial Polyethylene: Properties, Catalysts, and Processes (John Wiley & Sons, Hoboken, 2010).
4. Bonhomme, S., Cuer, A., Delort, A., Lemaire, J., Sancelme, M., and Scott, G.: Environmental biodegradation of polyethylene. Polym. Degrad. Stab. 81(3), 441 (2003).
5. Scott, G.: Polymers and the Environment (Royal Society of Chemistry, Cambridge, 1999).
6. Swift, G. and Wiles, D.: Biodegradable and degradable polymers and plastics in landfill sites. In Encyclopedia of Polymer Science and Technology, Kroschwitz, J.I., ed. (John Wiley & Sons., Hoboken, 2004).
7. Sudhakar, M., Doble, M., Murthy, P.S., and Venkatesan, R.: Marine microbe-mediated biodegradation of low-and high-density polyethylenes. Int. Biodeterior. Biodegrad. 61(3), 203 (2008).
8. Ojeda, T., Freitas, A., Birck, K., Dalmolin, E., Jacques, R., Bento, F., and Camargo, F.: Degradability of linear polyolefins under natural weathering. Polym. Degrad. Stab. 96(4), 703 (2011).
9. Gross, R.A. and Kalra, B.: Biodegradable polymers for the environment. Science 297(5582), 803 (2002).
10. Kissin, Y.V.: Polyethylene: End-use Properties and Their Physical Meaning (Carl Hanser Verlag GmbH Co KG, Cincinnati, 2012).
11. Tolinski, M.: Additives for Polyolefins: Getting the Most Out of Polypropylene, Polyethylene and TPO (William Andrew, Oxford, 2015).
12. Husseinsyah, S., Azmin, A.N., and Ismail, H.: Effect of maleic anhydride-grafted-polyethylene (MAPE) and silane on properties of recycled polyethylene/chitosan biocomposites. Polym.-Plast. Technol. Eng. 52(2), 168 (2013).
13. Orhan, Y., Hrenovic, J., and Buyukgungor, H.: Biodegradation of plastic compost bags under controlled soil conditions. Acta Chim. Slov. 51(3), 579 (2004).
14. Rogovina, S.Z., Aleksanyan, K.V., Novikov, D.D., Prut, E.V., and Rebrov, A.V.: Synthesis and investigation of polyethylene blends with natural polysaccharides and their derivatives. Polym. Sci., Ser. A 51(5), 554 (2009).
15. Rogovina, S.Z., Alexanyan, C.V., and Prut, E.V.: Biodegradable blends based on chitin and chitosan: Production, structure, and properties. J. Appl. Polym. Sci. 121(3), 1850 (2011).
16. Ismail, H., Shaari, S.M., and Othman, N.: The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds. Polym. Test. 30(7), 784 (2011).
17. Correlo, V., Boesel, L., Bhattacharya, M., Mano, J., Neves, N., and Reis, R.: Properties of melt processed chitosan and aliphatic polyester blends. Mater. Sci. Eng., A 403(1), 57 (2005).
18. Ermolovich, O. and Makarevich, A.: Effect of compatibilizer additives on the technological and performance characteristics of biodegradable materials based on starch-filled polyethylene. Russ. J. Appl. Chem. 79(9), 1526 (2006).
19. Raghavan, D. and Emekalam, A.: Characterization of starch/polyethylene and starch/polyethylene/poly (lactic acid) composites. Polym. Degrad. Stab. 72(3), 509 (2001).
20. Wu, C-S.: A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer 46(1), 147 (2005).
21. Husseinsyah, S., Amri, F., Husin, K., and Ismail, H.: Mechanical and thermal properties of chitosan-filled polypropylene composites: The effect of acrylic acid. J. Vinyl Addit. Technol. 17(2), 125 (2011).
22. Salmah, H., Faisal, A., and Kamarudin, H.: Chemical modification of chitosan-filled polypropylene (PP) composites: The effect of 3-aminopropyltriethoxysilane on mechanical and thermal properties. Int. J. Polym. Mater. 60(7), 429 (2011).
23. Salmah, H., Amri, F., and Kamarudin, H.: Properties of chitosan-filled polypropylene (PP) composites: The effect of acetic acid. Polym.-Plast. Technol. Eng. 51(1), 86 (2012).
24. Amri, F., Husseinsyah, S., and Hussin, K.: Mechanical, morphological and thermal properties of chitosan filled polypropylene composites: The effect of binary modifying agents. Composites, Part A 46, 89 (2013).
25. Agboh, O. and Qin, Y.: Chitin and chitosan fibers. Polym. Adv. Technol. 8(6), 355 (1997).
26. Chang, K., Lin, Y-S., and Chen, R.: The effect of chitosan on the gel properties of tofu (soybean curd). J. Food Eng. 57(4), 315 (2003).
27. Dutta, P., Tripathi, S., Mehrotra, G., and Dutta, J.: Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 114(4), 1173 (2009).
28. Krajewska, B.: Application of chitin-and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Technol. 35(2), 126 (2004).
29. Peter, M.G.: Applications and environmental aspects of chitin and chitosan. J. Macromol. Sci., Part A: Pure Appl. Chem. 32(4), 629 (1995).
30. Pillai, C., Paul, W., and Sharma, C.P.: Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7), 641 (2009).
31. Prashanth, K.H. and Tharanathan, R.: Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends Food Sci. Technol. 18(3), 117 (2007).
32. Rabea, E.I., Badawy, M.E.-T., Stevens, C.V., Smagghe, G., and Steurbaut, W.: Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4(6), 1457 (2003).
33. Agnihotri, S.A., Mallikarjuna, N.N., and Aminabhavi, T.M.: Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J. Controlled Release 100(1), 5 (2004).
34. Suh, J-K.F. and Matthew, H.W.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 21(24), 2589 (2000).
35. Reesha, K.V., Panda, S.K., Bindu, J., and Varghese, T.O.: Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. Int. J. Biol. Macromol. 79, 934 (2015).
36. Khoramnejadian, S.: Kinetic study of biodegradation of linear low density polyethylene/chitosan. Adv. Environ. Biol., 5(10), 3050 (2011).
37. Martínez-Camacho, A., Cortez-Rocha, M., Graciano-Verdugo, A., Rodríguez-Félix, F., Castillo-Ortega, M., Burgos-Hernández, A., Ezquerra-Brauer, J., and Plascencia-Jatomea, M.: Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid. Carbohydr. Polym. 91(2), 666 (2013).
38. Mir, S., Yasin, T., Halley, P.J., Siddiqi, H.M., and Nicholson, T.: Thermal, rheological, mechanical and morphological behavior of HDPE/chitosan blend. Carbohydr. Polym. 83(2), 414 (2011).
39. Ogah, A.O., Afiukwa, J.N., and Nduji, A.A.: Characterization and comparison of rheological properties of agro fiber filled high-density polyethylene bio-composites. Open J. Polym. Chem. 04(01), 12 (2014).
40. Park, S.I., Marsh, K.S., and Dawson, P.: Application of chitosan-incorporated LDPE film to sliced fresh red meats for shelf life extension. Meat Sci. 85(3), 493 (2010).
41. Quiroz-Castillo, J., Rodríguez-Félix, D., Grijalva-Monteverde, H., del Castillo-Castro, T., Plascencia-Jatomea, M., Rodríguez-Félix, F., and Herrera-Franco, P.: Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohydr. Polym. 101, 1094 (2014).
42. Rodríguez-Félix, D.E., Quiroz-Castillo, J.M., Grijalva-Monteverde, H., Castillo-Castro, T., Burruel-Ibarra, S.E., Rodríguez-Félix, F., Madera-Santana, T., Cabanillas, R.E., and Herrera-Franco, P.J.: Degradability of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride under natural weathering. J. Appl. Polym. Sci. 131(22), 41045 (2014).
43. Salmah, H. and Azieyanti, A.N.: Properties of recycled polyethylene/chitosan composites: The effect of polyethylene-graft-maleic anhydride. J. Reinf. Plast. Compos. 30(3), 195 (2010).
44. Sunilkumar, M., Francis, T., Thachil, E.T., and Sujith, A.: Low density polyethylene–chitosan composites: A study based on biodegradation. Chem. Eng. J. 204–206, 114 (2012).
45. Sunilkumar, M., Gafoor, A.A., Anas, A., Haseena, A.P., and Sujith, A.: Dielectric properties: A gateway to antibacterial assay—A case study of low-density polyethylene/chitosan composite films. Polym. J. 46(7), 422 (2014).
46. Vasile, C., Darie, R., Sdrobiş, A., Paslaru, E., Pricope, G., Baklavaridis, A., Munteanu, S., and Zuburtikudis, I.: Effectiveness of chitosan as antimicrobial agent in LDPE/CS composite films as minced poultry meat packaging materials. Cellul. Chem. Technol. 48(3–4), 325 (2014).
47. Vasile, C., Darie, R.N., Cheaburu-Yilmaz, C.N., Pricope, G-M., Bračič, M., Pamfil, D., Hitruc, G.E., and Duraccio, D.: Low density polyethylene–chitosan composites. Composites, Part B 55, 314 (2013).
48. Wang, H-s., Chen, D., and Chuai, C-z.: Mechanical and barrier properties of LLDPE/chitosan blown films for packaging. Packag. Technol. Sci. 28(10), 915 (2015).
49. Zhang, H.Z., He, Z.C., Liu, G.H., and Qiao, Y.Z.: Properties of different chitosan/low-density polyethylene antibacterial plastics. J. Appl. Polym. Sci. 113(3), 2018 (2009).
50. Lima, P.S., Guedes, C.F., Andrade, D.L.A.C.S., Canedo, E.L., and Silva, S.M.L.: High density polyethylene/chitosan compounds: Effect of load level on thermal and mechanical properties. In 2nd Brazilian Conference on Composite Materials—BCCM2 (São José dos Campos, 2014).
51. Braskem: High Density Polyethylene JV-060U Technical Data Sheet, Revision 8 (São Paulo, 2015).
52. Walsh, D. and Zoller, P.: Standard Pressure Volume Temperature Data for Polymers (CRC Press, Lancaster, 1995).
53. Yui, T., Imada, K., Okuyama, K., Obata, Y., Suzuki, K., and Ogawa, K.: Molecular and crystal structure of the anhydrous form of chitosan. Macromolecules 27(26), 7601 (1994).
54. Li, J., Revol, J., Naranjo, E., and Marchessault, R.: Effect of electrostatic interaction on phase separation behaviour of chitin crystallite suspensions. Int. J. Biol. Macromol. 18(3), 177 (1996).
55. Santos, C.P.F. and Dantas, S.L.A.: Avaliação de uma amostra de quitosana comercial para uso no tratamento de efluentes têxteis. Presented at the 48th Brazilian Chemistry Meeting (Rio de Janeiro, 2008).
56. Addivant: Polybond 3009 Technical Information [] (Danbury, 2013).
57. Moussout, H., Ahlafi, H., Aazza, M., and Bourakhouadar, M.: Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 130, 1 (2016).
58. Cox, W. and Merz, E.: Correlation of dynamic and steady-flow viscosities. J. Polym. Sci., Part A-2: Polym. Phys. 28, 619 (1958).
59. Dealy, J.M. and Larson, R.G.: Structure and Rheology of Molten Polymers (Hanser Publishers, Munich, 2006).
60. Winter, H.H.: Three views of viscoelasticity for Cox–Merz materials. Rheol. Acta 48(3), 241 (2009).
61. Gleissle, W. and Hochstein, B.: Validity of the Cox–Merz rule for concentrated suspensions. J. Rheol. 47(4), 897 (2003).
62. Cross, M.M.: Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 20(5), 417 (1965).
63. Carreau, P.J., De Kee, D., and Chhabra, R.P.: Rheology of Polymeric Systems: Principles and Applications (Hanser Publishers, Munich, 1997).
64. Bird, R.B., Armstrong, R.C., and Hassager, O.: Dynamics of polymeric liquids. In Fluid Mechanics, Vol. 1, 2nd ed. (John Wiley & Sons, New York, 1987).
65. Laun, H.M.: Prediction of elastic strains of polymer melts in shear and elongation. J. Rheol. 30(3), 459 (1986).
66. Sharma, V. and McKinley, G.H.: An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts. Rheol. Acta 51(6), 487 (2012).
67. Alves, T.S., Neto, J.E.S., Silva, S.M.L., Carvalho, L.H., and Canedo, E.L.: Process simulation of laboratory internal mixers. Polym. Test. 50, 94 (2016).
68. Canedo, E.L. and Valsamis, L.N.: Continuous Mixers, in Mixing and Compounding of Polymers, 2nd ed., Manas-Zloczower, I., ed. (Hanser Publishers, Munich, 2009); p. 1081.
69. Wetzel, M.D. and Shih, C.K.: Experimental simulation with a simple mixer and real material. In Mixing and Compounding of Polymers, Manas-Zloczower, I., ed. (Hanser Publishers, Munich, 2009); p. 479.
70. Costa, A.R.M., Almeida, T.G., Silva, S.M.L., Carvalho, L.H., and Canedo, E.L.: Chain extension in poly (butylene-adipate-terephthalate). Inline testing in a laboratory internal mixer. Polym. Test. 42, 115 (2015).
71. Tavares, A.A., Silva, D.F., Lima, P.S., Andrade, D.L., Silva, S.M., and Canedo, E.L.: Chain extension of virgin and recycled polyethylene terephthalate. Polym. Test. 50, 26 (2016).
72. Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Galed, G., and Heras, Á.: Functional characterization of chitin and chitosan. Curr. Chem. Biol. 3(2), 203 (2009).
73. Hristov, V. and Vlachopoulos, J.: Effects of polymer molecular weight and filler particle size on flow behavior of wood polymer composites. Polym. Compos. 29(8), 831 (2008).
74. Barnes, H.A., Hutton, J.F., and Walters, K.: An Introduction to Rheology (Elsevier, Amsterdam, 1989).
75. Shenoy, A.V.: Rheology of Filled Polymer Systems (Springer Science & Business Media, Dordrecht, 1999).
76. Krieger, I.M. and Dougherty, T.J.: A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3(1), 137 (1959).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed