Skip to main content Accessibility help
×
Home

Rheological characterization of biocompatible associative polymer hydrogels with crystalline and amorphous endblocks

  • Sarvesh K. Agrawal (a1), Naomi Sanabria-DeLong (a2), Gregory N. Tew (a2) and Surita R. Bhatia (a1)

Abstract

Control over mechanical properties of hydrogels is of primary importance for the use of these materials in drug delivery and tissue engineering applications. We demonstrate here that crystallinity and block length of poly(lactide) (PLA) can be used to tune the elastic modulus of associative network gels of poly(lactide)–poly(ethylene oxide)–poly(lactide) over several orders of magnitude. Polymers made with crystalline L lactic acid blocks formed very stiff hydrogels at 25 wt% concentration with an elastic modulus that was almost an order of magnitude higher than hydrogels of polymers with a similar molecular weight but containing amorphous D/L-lactic acid blocks. The relaxation behavior and crosslink density of gels are also significantly influenced by crystallinity of PLA and are again a function of PLA block length. Using these variables we can design new tailor-made materials for biomedical applications with precise control over their structure and mechanical properties.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: tew@mail.pse.umass.edu
b)Address all correspondence to these authors. e-mail: sbhatia@ecs.umass.edu

References

Hide All
1.Engler, A.J., Griffin, M.A., Sen, S., Bonnetnann, C.G., Sweeney, H.L., Discher, D.E.: Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877 (2004).
2.Discher, D.E., Janmey, P., Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139 (2005).
3.Engler, A.J., Sweeney, H.L., Discher, D.E.: Substrate elasticity alters human mesenchymal stem cell differentiation. Biophys. J. 88, 500A (2005).
4.Bao, G., Suresh, S.: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715 (2003).
5.Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101, 1869 (2001).
6.Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Delivery Rev. 54(1), 3 (2002).
7.Kissel, T., Li, Y.X., Unger, F.: ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv. Drug Delivery Rev. 54(1), 99 (2002).
8.Langer, R., Peppas, N.A.: Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 49, 2990 (2003).
9.Yaszemski, M.J.: Tissue Engineering and Novel Delivery System (Marcel Dekker, New York, 2004), pp. vii, 645.
10.Tew, G.N., Sanabria-DeLong, N., Agrawal, S.K., Bhatia, S.R.: New properties from PLA-PEO-PLA hydrogels. Soft Matter 1, 253 (2005).
11.Bi, J.J., Downs, J.C., Jacob, J.T.: Tethered protein/peptide-surface-modified hydrogels. J. Biomater. Sci. Polym. Ed. 15, 905 (2004).
12.Noorjahan, S.E., Sastry, T.P.: An in vivo study of hydrogels based on physiologically clotted fibrin-gelatin composites as wound-dressing materials. J. Biomed. Mater. Res. B Appl. Biomater. 71B, 305 (2004).
13.Aamer, K.A., Sardinha, H., Bhatia, S.R., Tew, G.N.: Rheological studies of PLLA-PEO-PLLA triblock copolymer hydrogels. Biomaterials 25, 1087 (2004).
14.Nowak, A.P., Breedveld, V., Pakstis, L., Ozbas, B., Pine, D.J., Pochan, D., Deming, T.J.: Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424 (2002).
15.Seal, B.L., Panitch, A.: Physical polymer matrices based on affinity interactions between peptides and polysaccharides. Biomacromolecules 4, 1572 (2003).
16.Vernon, R.B., Gooden, M.D., Lara, S.L., Wight, T.N.: Native fibrillar collagen membranes of micron-scale and submicron thicknesses for cell support and perfusion. Biomaterials 26, 1109 (2005).
17.Choi, S.K., Kim, D.: Drug-releasing behavior of MPEG/PLA block copolymer micelles and solid particles controlled by component block length. J. Appl. Polym. Sci. 83, 435 (2002).
18.Jeong, B., Bae, Y.H., Lee, D.S., Kim, S.W.: Biodegradable block copolymers as injectable drug delivery systems. Nature 388, 860 (1997).
19.Jeong, B., Kibbey, M.R., Birnbaum, J.C., Won, Y.Y., Gutowska, A.: Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules 33, 8317 (2000).
20.Kricheldorf, H.R., Meierhaack, J.: Polylactones.22. ABA triblock copolymers of L-lactide and poly(ethylene glycol). Macromol. Chem. Phys. 194, 715 (1993).
21.Kubies, D., Rypacek, F., Kovarova, J., Lednicky, F.: Microdomain structure in polylactide-block-poly(ethylene oxide) copolymer films. Biomaterials 21, 529 (2000).
22.Li, S.M., Rashkov, I., Espartero, J.L., Manolova, N., Vert, M.: Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(L-lactic acid) blocks. Macromolecules 29, 57 (1996).
23.Li, Y.X., Kissel, T.: Synthesis and properties of biodegradable ABA triblock copolymers consisting of poly(L-lactic acid) or poly(L-lactic-Co-glycolic acid) A-blocks attached to central poly(oxyethylene) B-Blocks. J. Controlled Release 27, 247 (1993).
24.Li, Y.X., Volland, C., Kissel, T.: In-vitro degradation and bovine serum-albumin release of the Aba triblock copolymers consisting of poly(L(+)lactic acid), or poly(L(+)lactic acid-Co-glycolic acid) A-blocks attached to central polyoxyethylene B-blocks. J. Controlled Release 32, 121 (1994).
25.Liu, L., Li, C.X., Liu, X.H., He, B.L.: Micellar formation in aqueous milieu from biodegradable triblock copolymer polylactide/poly(ethylene glycol)/polylactide. Polym. J. 31, 845 (1999).
26.Molina, I., Li, S.M., Martinez, M.B., Vert, M.: Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 22, 363 (2001).
27.Rashkov, I., Manolova, N., Li, S.M., Espartero, J.L., Vert, M.: Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(L-lactic acid) chains. Macromolecules 29, 50 (1996).
28.Saito, N., Okada, T., Horiuchi, H., Murakami, N., Takahashi, J., Nawata, M., Ota, H., Nozaki, K., Takaoka, K.: A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat. Biotechnol. 19, 332 (2001).
29.Yasugi, K., Nagasaki, Y., Kato, M., Kataoka, K.: Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(D,L-lactide) block copolymers as potential drug carrier. J. Controlled Release 62(1-2), 89 (1999).
30.Lee, D.S., Shim, M.S., Kim, S.W., Lee, H., Park, I., Chang, T.Y.: Novel thermoreversible gelation of biodegradable PLGA-block- PEO-block-PLGA triblock copolymers in aqueous solution. Macromol. Rapid Commun. 22, 587 (2001).
31.Lee, H.T., Lee, D.S.: Thermoresponsive phase transitions of PLA-block-PEO-block-PLA triblock stereo-copolymers in aqueous solution. Macromol. Res. 10, 359 (2002).
32.Shim, M.S., Lee, H.T., Shim, W.S., Park, I., Lee, H., Chang, T., Kim, S.W., Lee, D.S.: Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)- b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J. Biomed. Mater. Res. 61, 188 (2002).
33.Jeong, B., Bae, Y.H., Kim, S.W.: Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 32, 7064 (1999).
34.Jeong, B., Kim, S.W., Bae, Y.H.: Thermosensitive sol-gel reversible hydrogels. Adv. Drug Delivery Rev. 54(1), 37 (2002).
35.Agrawal, S.K., Chin, K.S., Sanabria-DeLong, N., Aamer, K.A., Sardinha, H., Tew, G.N., Robert, S.C., and Bhatia, S.R.: Rheology and biocompatibility of poly(lactide)-poly(ethylene oxide)-poly(lactide) hydrogels, in Mechanical Properties of Bioinspired and Biological Materials edited by Viney, C., Katti, K., Ulm, F-J., and Hellmich, C. (Mater. Res. Soc. Symp. Proc. 844, Warrendale, PA, 2005), Y9.8, p. 327.
36.Annable, T., Buscall, R., Ettelaie, R., Whittlestone, D.: The rheology of solutions of associating polymers–Comparison of experimental behavior with transient network theory. J. Rheol. 37, 695 (1993).
37.Semenov, A.N., Joanny, J.F., Khokhlov, A.R.: Associating polymers–Equilibrium and linear viscoelasticity. Macromolecules 28, 1066 (1995).
38.Serero, Y., Aznar, R., Porte, G., Berret, J.F., Calvet, D., Collet, A., Viguier, M.: Associating polymers: From “flowers” to transient networks. Phys. Rev. Lett. 81, 5584 (1998).
39.Tanaka, F., Edwards, S.F.: Viscoelastic properties of physically cross-linked networks–Transient network theory. Macromolecules 25, 1516 (1992).
40.Sanabria-DeLong, N., Agrawal, S.K., Bhatia, S.R., Tew, G.N.: Controlling hydrogel properties by crystallization of hydrophobic domains. Macromolecules 39, 1308 (2006).
41.Tae, G., Kornfield, J.A., Hubbell, J.A., Johannsmann, D., Hogen-Esch, T.E.: Hydrogels with controlled, surface erosion characteristics from self-assembly of fluoroalkyl-ended poly(ethylene glycol). Macromolecules 34, 6409 (2001).
42.Hassan, C.M., Peppas, N.A.: Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci. 153, 37 (2000).
43.Ricciardi, R., D’Errico, G., Auriemma, F., Ducouret, G., Tedeschi, A.M., De Rosa, C., Laupretre, F., Lafuma, F.: Short-time dynamics of solvent molecules and supramolecular organization of poly (vinyl alcohol) hydrogels obtained by freeze/thaw techniques. Macromolecules 38, 6629 (2005).
44.Misra, S., Nguyenmisra, M., Mattice, W.L.: Bridging by reversibly adsorbed telechelic polymers—A transient network. Macromolecules 27, 5037 (1994).
45.Pham, Q.T., Russel, W.B., Thibeault, J.C., Lau, W.: Micellar solutions of associative triblock copolymers: The relationship between structure and rheology. Macromolecules 32, 5139 (1999).
46.Tae, G.Y., Kornfield, J.A., Hubbell, J.A., Lal, J.S.: Ordering transitions of fluoroalkyl-ended poly(ethylene glycol): Rheology and SANS. Macromolecules 35, 4448 (2002).
47.Winnik, M.A., Yekta, A.: Associative polymers in aqueous solution. Curr. Opin. Colloid Interf. Sci. 2, 424 (1997).
48.Xu, B., Li, L., Yekta, A., Masoumi, Z., Kanagalingam, S., Winnik, M.A., Zhang, K.W., Macdonald, P.M.: Synthesis, characterization, and rheological behavior of polyethylene glycols end-capped with fluorocarbon hydrophobes. Langmuir 13, 2447 (1997).
49.Stockwell, R., Meachim, G.The chondrocyte, in Adult Articular Cartilage, edited by Freeman, M.A.R., (Pitman Medical, Tunbridge Wells, England, 1979).
50.Frank, E.H., Grodzinsky, A.J.: Cartilage electromechanics—II. A continuum model of cartilage electrokinetics and correlation with experiments. J. Biomech. Eng. 20, 629 (1987).
51.Yu, Q.L., Zhou, J.B., Fung, Y.C.: Neutral axis location in bending and Young's modulus of different layers of arterial wall. Am. J. Physiol. 265, H52 (1993).
52.Carter, F.J., Frank, T.G., Davies, P.J., McLean, D., Cuschieri, A.: Measurements and modelling of the compliance of human and porcine organs. Med. Image Anal. 5, 231 (2001).
53.Erkamp, R.Q., Wiggins, P., Skovoroda, A.R., Emelianov, S.Y., O'Donnell, M.: Measuring the elastic modulus of small tissue samples. Ultrason. Imaging 20, 17 (1998).
54.Hutmacher, D.W.: Scaffold design and fabrication technologies for engineering tissues: State of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 12, 107 (2001).
55.Winter, H.H., Chambon, F.: Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J. Rheol. 30, 367 (1986).
56.Lin, Y.G., Mallin, D.T., Chien, J.C.W., Winter, H.H.: Dynamic mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene). Macromolecules 24, 850 (1991).
57.Richtering, H.W., Gagnon, K.D., Lenz, R.W., Fuller, R.C., Winter, H.H.: Physical gelation of a bacterial thermoplastic elastomer. Macromolecules 25, 2429 (1992).
58.Clement, F., Johner, A., Joanny, J.F., Semenov, A.N.: Stress relaxation in telechelic gels. 1. Sticker extraction. Macromolecules 33, 6148 (2000).
59.Nguyenmisra, M., Mattice, W.L.: Dynamics of end-associated triblock copolymer networks. Macromolecules 28, 6976 (1995).
60.Calvet, D., Collet, A., Viguier, M., Berret, J.F., Serero, Y.: Perfluoroalkyl end-capped poly(ethylene oxide). Synthesis, characterization, and rheological behavior in aqueous solution. Macromolecules 36, 449 (2003).
61.Durrschmidt, T., Hoffmann, H.: Organogels from ABA triblock copolymers. Colloid Polym. Sci. 279, 1005 (2001).
62.Castelletto, V., Hamley, I.W., Yuan, X.F., Kelarakis, A., Booth, C.: Structure and rheology of aqueous micellar solutions and gels formed from an associative poly(oxybutylene)-poly(oxyethylene)-poly(oxybutylene) triblock copolymer. Soft Matter 1(2), 138 (2005).
63.Inomata, K., Nakanishi, D., Banno, A., Nakanishi, E., Abe, Y., Kurihara, R., Fujimoto, K., Nose, T.: Association and physical gelation of ABA triblock copolymer in selective solvent. Polym. 44, 5303 (2003).
64.Ng, W.K., Tam, K.C., Jenkins, R.D.: Lifetime and network relaxation time of a HEUR-C20 associative polymer system. J. Rheol. 44, 137 (2000).
65.Cathebras, N., Collet, A., Viguier, M., Berret, J.F.: Synthesis and linear viscoelasticity of fluorinated hydrophobically modified ethoxylated urethanes (F-HEUR). Macromolecules 31, 1305 (1998).
66.Green, M.S., Tobolsky, A.V.: A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14, 80 (1946).

Keywords

Rheological characterization of biocompatible associative polymer hydrogels with crystalline and amorphous endblocks

  • Sarvesh K. Agrawal (a1), Naomi Sanabria-DeLong (a2), Gregory N. Tew (a2) and Surita R. Bhatia (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed