Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T21:16:12.931Z Has data issue: false hasContentIssue false

Review of microstructure and micromechanism-based constitutive modeling of polycrystals with a low-symmetry crystal structure

Published online by Cambridge University Press:  23 October 2018

Irene J. Beyerlein*
Affiliation:
Mechanical Engineering Department, Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106, USA
Marko Knezevic
Affiliation:
Department of Mechanical Engineering, University of New Hampshire, Durham, New Hampshire 03824, USA
*
a)Address all correspondence to this author. e-mail: beyerlein@ucsb.edu
Get access

Abstract

Predictions of the mechanical response of polycrystalline metals and underlying microstructure evolution and deformation mechanisms are critically important for the manufacturing and design of metallic components, especially those made of new advanced metals that aim to outperform those in use today. In this review article, recent advancements in modeling deformation processing-microstructure evolution and in microstructure–property relationships of polycrystalline metals are covered. While some notable examples will use standard crystal plasticity models, such as self-consistent and Taylor-type models, the emphasis is placed on more advanced full-field models such as crystal plasticity finite elements and Green’s function-based models. These models allow for nonhomogeneity in the mechanical fields leading to greater insight and predictive capability at the mesoscale. Despite the strides made, it still remains a mesoscale modeling challenge to incorporate in the same model the role of influential microstructural features and the dynamics of underlying mechanisms. The article ends with recommendations for improvements in computational speed.

Type
Invited Feature Paper - REVIEW
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Barrett, C.S. and Massalski, M.A.: Structure of Metals (McGraw-Hill, New York, 1966).Google Scholar
Taylor, G.I.: Plastic strain in metals. J. Inst. Met. 62, 307 (1938).Google Scholar
Asaro, R.J.: Crystal plasticity. J. Appl. Mech. 50, 921 (1983).CrossRefGoogle Scholar
Lebensohn, R.A. and Tomé, C.N.: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater. 41, 2611 (1993).CrossRefGoogle Scholar
Lebensohn, R.A. and Tomé, C.N.: A self-consistent viscoplastic model: Prediction of rolling textures of anisotropic polycrystals. Mater. Sci. Eng., A 175, 71 (1994).CrossRefGoogle Scholar
Lebensohn, R.A., Tomé, C.N., and Castaneda, P.P.: Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos. Mag. 87, 4287 (2007).CrossRefGoogle Scholar
Molinari, A., Canova, G.R., and Ahzi, S.: A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall. 35, 2983 (1987).CrossRefGoogle Scholar
Molinari, A., Ahzi, S., and Kouddane, R.: On the self-consistent modeling of elastic-plastic behavior of polycrystals. Mech. Mater. 26, 43 (1997).CrossRefGoogle Scholar
Zecevic, M., Beyerlein, I.J., and Knezevic, M.: Coupling elasto-plastic self-consistent crystal plasticity and implicit finite elements: Applications to compression, cyclic tension-compression, and bending to large strains. Int. J. Plast. 93, 187 (2017).CrossRefGoogle Scholar
Zecevic, M. and Knezevic, M.: Modeling of sheet metal forming based on implicit embedding of the elasto-plastic self-consistent formulation in shell elements: Application to cup drawing of AA6022-T4. JOM 69, 922 (2017).CrossRefGoogle Scholar
Zecevic, M., McCabe, R.J., and Knezevic, M.: Spectral database solutions to elasto-viscoplasticity within finite elements: Application to a cobalt-based FCC superalloy. Int. J. Plast. 70, 151 (2015).CrossRefGoogle Scholar
Tomé, C.N., Maudlin, P.J., Lebensohn, R.A., and Kaschner, G.C.: Mechanical response of zirconium: I. Derivation of a polycrystal constitutive law and finite element analysis. Acta Mater. 49, 3085 (2001).CrossRefGoogle Scholar
Knezevic, M., McCabe, R.J., Lebensohn, R.A., Tomé, C.N., Liu, C., Lovato, M.L., and Mihaila, B.: Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: Application to low-symmetry metals. J. Mech. Phys. Solid. 61, 2034 (2013).CrossRefGoogle Scholar
Bronkhorst, C.A., Kalidindi, S.R., and Anand, L.: An experimental and analytical study of the evolution of crystallographic texturing in Fcc materials. Textures Microstruct. 14, 1031 (1991).CrossRefGoogle Scholar
Bronkhorst, C.A., Kalidindi, S.R., and Anand, L.: Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Philos. Trans. R. Soc. London, Ser. A 341, 443 (1992).CrossRefGoogle Scholar
Lebensohn, R.A., Liu, Y., and Ponte Castañeda, P.: On the accuracy of the self-consistent approximation for polycrystals: Comparison with full-field numerical simulations. Acta Mater. 52, 5347 (2004).CrossRefGoogle Scholar
Lieberman, E.J., Lebensohn, R.A., Menasche, D.B., Bronkhorst, C.A., and Rollett, A.D.: Microstructural effects on damage evolution in shocked copper polycrystals. Acta Mater. 116, 270 (2016).CrossRefGoogle Scholar
Liu, B., Raabe, D., Roters, F., Eisenlohr, P., and Lebensohn, R.A.: Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction. Modell. Simul. Mater. Sci. Eng. 18, 085005 (2010).CrossRefGoogle Scholar
Lebensohn, R.A., Rollett, A.D., and Suquet, P.: Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals. JOM 63, 13 (2011).CrossRefGoogle Scholar
Turner, P.A. and Tomé, C.N.: A study of residual stresses in Zircaloy-2 with rod texture. Acta Metall. Mater. 42, 4143 (1994).CrossRefGoogle Scholar
Zecevic, M., Knezevic, M., Beyerlein, I.J., and Tomé, C.N.: An elasto-plastic self-consistent model with hardening based on dislocation density, twinning and de-twinning: Application to strain path changes in HCP metals. Mater. Sci. Eng., A 638, 262 (2015).CrossRefGoogle Scholar
Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London, Ser. A 241, 376 (1957).CrossRefGoogle Scholar
Beyerlein, I.J., Zhang, X., and Misra, A.: Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44, 329 (2014).CrossRefGoogle Scholar
Arul Kumar, M., Beyerlein, I.J., McCabe, R.J., and Tomé, C.N.: Grain neighbour effects on twin transmission in hexagonal close-packed materials. Nat. Commun. 7, 13826 (2016).CrossRefGoogle ScholarPubMed
Van Houtte, P.: Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning. Acta Metall. Mater. 26, 591 (1978).CrossRefGoogle Scholar
Tomé, C.N., Lebensohn, R.A., and Kocks, U.F.: A model for texture development dominated by deformation twinning: Application to zirconium alloys. Acta Metall. Mater. 39, 2667 (1991).CrossRefGoogle Scholar
Wu, X., Kalidindi, S.R., Necker, C., and Salem, A.A.: Prediction of crystallographic texture evolution and anisotropic stress-strain curves during large plastic strains in high purity a-titanium using a Taylor-type crystal plasticity model. Acta Mater. 55, 423 (2007).CrossRefGoogle Scholar
Proust, G., Tomé, C.N., and Kaschner, G.C.: Modeling texture, twinning and hardening evolution during deformation of hexagonal materials. Acta Mater. 55, 2137 (2007).CrossRefGoogle Scholar
Mareau, C. and Daymond, M.R.: Study of internal strain evolution in Zircaloy-2 using polycrystalline models: Comparison between a rate-dependent and a rate-independent formulation. Acta Mater. 58, 3313 (2010).CrossRefGoogle Scholar
Proust, G., Tomé, C.N., Jain, A., and Agnew, S.R.: Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 25, 861 (2009).CrossRefGoogle Scholar
Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).CrossRefGoogle Scholar
Capolungo, L., Beyerlein, I.J., Kaschner, G.C., and Tomé, C.N.: On the interaction between slip dislocations and twins in HCP Zr. Mater. Sci. Eng., A 513–514, 42 (2009).CrossRefGoogle Scholar
Proust, G., Kaschner, G.C., Beyerlein, I.J., Clausen, B., Brown, D.W., McCabe, R.J., and Tomé, C.N.: Detwinning of high-purity zirconium: In situ neutron diffraction experiments. Exp. Mech. 50, 125 (2010).CrossRefGoogle Scholar
De Cooman, B.C., Estrin, Y., and Kim, S.K.: Twinning-induced plasticity (TWIP) steels. Acta Mater. 142, 283 (2018).CrossRefGoogle Scholar
Beyerlein, I.J., McCabe, R.J., and Tomé, C.N.: Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study. J. Mech. Phys. Solid. 59, 988 (2011).CrossRefGoogle Scholar
Niezgoda, S.R., Kanjarla, A.K., Beyerlein, I.J., and Tomé, C.N.: Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close-packed metals. Int. J. Plast. 56, 119 (2014).CrossRefGoogle Scholar
Abdolvand, H. and Daymond, M.R.: Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach—Part I: Average behavior. J. Mech. Phys. Solid. 61, 783 (2013).CrossRefGoogle Scholar
Abdolvand, H. and Daymond, M.R.: Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach; part II: Local behavior. J. Mech. Phys. Solid. 61, 803 (2013).CrossRefGoogle Scholar
Abdolvand, H., Majkut, M., Oddershede, J., Wright, J.P., and Daymond, M.R.: Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: Part II—Crystal plasticity finite element modeling. Acta Mater. 93, 235 (2015).CrossRefGoogle Scholar
Ardeljan, M., Beyerlein, I.J., McWilliams, B.A., and Knezevic, M.: Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: Application to AZ31 magnesium alloy. Int. J. Plast. 83, 90 (2016).CrossRefGoogle Scholar
Ardeljan, M., Knezevic, M., Nizolek, T., Beyerlein, I.J., Mara, N.A., and Pollock, T.M.: A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model. Int. J. Plast. 74, 35 (2015).CrossRefGoogle Scholar
Ardeljan, M., McCabe, R.J., Beyerlein, I.J., and Knezevic, M.: Explicit incorporation of deformation twins into crystal plasticity finite element models. Comput. Meth. Appl. Mech. Eng. 295, 396 (2015).CrossRefGoogle Scholar
Cheng, J. and Ghosh, S.: A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys. Int. J. Plast. 67, 148 (2015).CrossRefGoogle Scholar
Savage, D.J., Beyerlein, I.J., and Knezevic, M.: Coupled texture and non-Schmid effects on yield surfaces of body-centered cubic polycrystals predicted by a crystal plasticity finite element approach. Int. J. Solid Struct. 109, 22 (2017).CrossRefGoogle Scholar
Tonks, M.R., Bingert, J.F., Bronkhorst, C.A., Harstad, E.N., and Tortorelli, D.A.: Two stochastic mean-field polycrystal plasticity methods. J. Mech. Phys. Solid. 57, 1230 (2009).CrossRefGoogle Scholar
Zhang, P., Karimpour, M., Balint, D., and Lin, J.: Three-dimensional virtual grain structure generation with grain size control. Mech. Mater. 55, 89 (2012).CrossRefGoogle Scholar
Kalidindi, S.R.: Incorporation of deformation twinning in crystal plasticity models. J. Mech. Phys. Solid. 46, 267 (1998).CrossRefGoogle Scholar
Bathe, K-J.: Finite Element Procedures (Prentice Hall, Englewood Cliffs, New Jersey, 1996); p. 1037.Google Scholar
Zecevic, M., McCabe, R.J., and Knezevic, M.: A new implementation of the spectral crystal plasticity framework in implicit finite elements. Mech. Mater. 84, 114 (2015).CrossRefGoogle Scholar
Kalidindi, S.R., Bronkhorst, C.A., and Anand, L.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solid. 40, 537 (1992).CrossRefGoogle Scholar
Kalidindi, S.R., Duvvuru, H.K., and Knezevic, M.: Spectral calibration of crystal plasticity models. Acta Mater. 54, 1795 (2006).CrossRefGoogle Scholar
Moulinec, H. and Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Meth. Appl. Mech. Eng. 157, 69 (1998).CrossRefGoogle Scholar
Lebensohn, R.A., Kanjarla, A.K., and Eisenlohr, P.: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast. 32–33, 5969 (2012).CrossRefGoogle Scholar
Lebensohn, R.A., Liu, Y., and Castañeda, P.P.: On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations. Acta Mater. 52, 53475361 (2004).CrossRefGoogle Scholar
Mercier, S. and Molinari, A.: Homogenization of elastic–viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes. Int. J. Plast. 25, 1024 (2009).CrossRefGoogle Scholar
Lebensohn, R.: N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Mater. 49, 2723 (2001).CrossRefGoogle Scholar
Lebensohn, R.A., Kanjarla, A.K., and Eisenlohr, P.: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast. 32–33, 59 (2012).CrossRefGoogle Scholar
Hansen, B.L., Beyerlein, I.J., Bronkhorst, C.A., Cerreta, E.K., and Denis-Koller, D.: A dislocation-based multi-rate single crystal plasticity model. Int. J. Plast. 44, 129146 (2013).CrossRefGoogle Scholar
Knezevic, M., Levinson, A., Harris, R., Mishra, R.K., Doherty, R.D., and Kalidindi, S.R.: Deformation twinning in AZ31: Influence on strain hardening and texture evolution. Acta Mater. 58, 6230 (2010).CrossRefGoogle Scholar
Miehe, C., Schröder, J., and Schotte, J.: Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput. Meth. Appl. Mech. Eng. 171, 387 (1999).CrossRefGoogle Scholar
Beaudoin, A.J., Dawson, P.R., Mathur, K.K., Kocks, U.F., and Korzekwa, D.A.: Application of polycrystal plasticity to sheet forming. Comput. Meth. Appl. Mech. Eng. 117, 49 (1994).CrossRefGoogle Scholar
Sarma, G.B. and Dawson, P.R.: Texture predictions using a polycrystal plasticity model incorporating neighbor interactions. Int. J. Plast. 12, 1023 (1996).CrossRefGoogle Scholar
Ardeljan, M., Beyerlein, I.J., and Knezevic, M.: A dislocation density based crystal plasticity finite element model: Application to a two-phase polycrystalline HCP/BCC composites. J. Mech. Phys. Solid. 66, 16 (2014).CrossRefGoogle Scholar
Sarma, G.B. and Dawson, P.R.: Effects of interactions among crystals on the inhomogeneous deformations of polycrystals. Acta Mater. 44, 1937 (1996).CrossRefGoogle Scholar
Mika, D.P. and Dawson, P.R.: Effects of grain interaction on deformation in polycrystals. Mater. Sci. Eng., A 257, 62 (1998).CrossRefGoogle Scholar
Delannay, L., Jacques, P.J., and Kalidindi, S.R.: Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons. Int. J. Plast. 22, 1879 (2006).CrossRefGoogle Scholar
Ritz, H. and Dawson, P.: Sensitivity to grain discretization of the simulated crystal stress distributions in FCC polycrystals. Modell. Simul. Mater. Sci. Eng. 17, 015001 (2008).CrossRefGoogle Scholar
Zhao, Z., Ramesh, M., Raabe, D., Cuitiño, A.M., and Radovitzky, R.: Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal. Int. J. Plast. 24, 2278 (2008).CrossRefGoogle Scholar
Kalidindi, S.R., Bhattacharya, A., and Doherty, R.: Detailed analysis of plastic deformation in columnar polycrystalline aluminum using orientation image mapping and crystal plasticity models. Proc. R. Soc. London, Ser. A 460, 1935 (2004).CrossRefGoogle Scholar
Diard, O., Leclercq, S., Rousselier, G., and Cailletaud, G.: Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity: Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int. J. Plast. 21, 691 (2005).CrossRefGoogle Scholar
Shenoy, M., Tjiptowidjojo, Y., and McDowell, D.: Microstructure-sensitive modeling of polycrystalline IN 100. Int. J. Plast. 24, 1694 (2008).CrossRefGoogle Scholar
Lim, H., Carroll, J.D., Battaile, C.C., Buchheit, T.E., Boyce, B.L., and Weinberger, C.R.: Grain-scale experimental validation of crystal plasticity finite element simulations of tantalum oligocrystals. Int. J. Plast. 60, 1 (2014).CrossRefGoogle Scholar
Ardeljan, M., Savage, D.J., Kumar, A., Beyerlein, I.J., and Knezevic, M.: The plasticity of highly oriented nano-layered Zr/Nb composites. Acta Mater. 115, 189 (2016).CrossRefGoogle Scholar
De Berg, M., Van Kreveld, M., Overmars, M., and Schwarzkopf, O.C.: Computational Geometry (Springer, Berlin Heidelberg, 2000).CrossRefGoogle Scholar
Boots, B.: The arrangement of cells in “random” networks. Metallography 15, 53 (1982).CrossRefGoogle Scholar
Aboav, D.: The arrangement of grains in a polycrystal. Metallography 3, 383 (1970).CrossRefGoogle Scholar
DREAM.3D Version 4.2: BlueQuartz Software (Springboro, Ohio, 2013).Google Scholar
Groeber, M.A. and Jackson, M.A.: DREAM.3D: A digital representation environment for the analysis of microstructure in 3D. Int. Mater. Manu. Innov. 3, 5 (2014).CrossRefGoogle Scholar
Knezevic, M., Drach, B., Ardeljan, M., and Beyerlein, I.J.: Three dimensional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models. Comput. Meth. Appl. Mech. Eng. 277, 239 (2014).CrossRefGoogle Scholar
Ardeljan, M. and Knezevic, M.: Explicit modeling of double twinning in AZ31 using crystal plasticity finite elements for predicting the mechanical fields for twin variant selection and fracture analyses. Acta Mater. 157, 339 (2018).CrossRefGoogle Scholar
Barrett, T.J., Savage, D.J., Ardeljan, M., and Knezevic, M.: An automated procedure for geometry creation and finite element mesh generation: Application to explicit grain structure models and machining distortion. Comput. Mater. Sci. 141(Suppl. C), 269 (2018).CrossRefGoogle Scholar
Tomé, C., Canova, G.R., Kocks, U.F., Christodoulou, N., and Jonas, J.J.: The relation between macroscopic and microscopic strain hardening in FCC polycrystals. Acta Metall. 32, 1637 (1984).CrossRefGoogle Scholar
Beyerlein, I.J. and Tomé, C.N.: A dislocation-based constitutive law for pure Zr including temperature effects. Int. J. Plast. 24, 867 (2008).CrossRefGoogle Scholar
Capolungo, L., Beyerlein, I.J., and Tomé, C.N.: Slip-assisted twin growth in hexagonal close-packed metals. Scripta Mater. 60, 32 (2009).CrossRefGoogle Scholar
Lebensohn, R.A., Castañeda, P.P., Brenner, R., and Castelnau, O.: Full-field versus homogenization methods to predict microstructure–property relations for polycrystalline materials. In Computational Methods for Microstructure–Property Relationships, Ghosh, S. and Dimiduk, D., eds. (Springer, Boston, MA, 2011).CrossRefGoogle Scholar
Beyerlein, I., Capolungo, L., Marshall, P., McCabe, R., and Tomé, C.: Statistical analyses of deformation twinning in magnesium. Philos. Mag. 90, 2161 (2010).CrossRefGoogle Scholar
Capolungo, L., Marshall, P., McCabe, R., Beyerlein, I., and Tomé, C.: Nucleation and growth of twins in Zr: A statistical study. Acta Mater. 57, 6047 (2009).CrossRefGoogle Scholar
Meyers, M.A., Andrade, U.R., and Chokshi, A.H.: The effect of grain size on the high-strain, high-strain-rate behavior of copper. Metall. Mater. Trans. A 26, 2881 (1995).CrossRefGoogle Scholar
Beyerlein, I.J. and Tomé, C.N.: A probabilistic twin nucleation model for HCP polycrystalline metals. Proc. R. Soc. A 466, 2517 (2010).CrossRefGoogle Scholar
Beyerlein, I.J., McCabe, R.J., and Tome, C.N.: Stochastic processes of 1012 deformation twinning in hexagonal close-packed polycrystalline zirconium and magnesium. Int. J. Multiscale Comput. Eng. 9, 459 (2011).CrossRefGoogle Scholar
Lentz, M., Risse, M., Schaefer, N., Reimers, W., and Beyerlein, I.: Strength and ductility with$\left\{ {10\bar{1}1} \right\}$$\left\{ {10\bar{1}2} \right\}$ double twinning in a magnesium alloy. Nat. Commun. 7, 1 (2016).CrossRefGoogle Scholar
Rollett, A., Lebensohn, R., Groeber, M., Choi, Y., Li, J., and Rohrer, G.: Stress hot spots in viscoplastic deformation of polycrystals. Modell. Simul. Mater. Sci. Eng. 18, 074005 (2010).CrossRefGoogle Scholar
Kocks, U.F., Tomé, C.N., and Wenk, H-R.: Texture and Anisotropy (Cambridge University Press, Cambridge, U.K., 1998).Google Scholar
Zecevic, M., Knezevic, M., Beyerlein, I.J., and McCabe, R.J.: Origin of texture development in orthorhombic uranium. Mater. Sci. Eng., A 665, 108 (2016).CrossRefGoogle Scholar
Knezevic, M., Crapps, J., Beyerlein, I.J., Coughlin, D.R., Clarke, K.D., and McCabe, R.J.: Anisotropic modeling of structural components using embedded crystal plasticity constructive laws within finite elements. Int. J. Mech. Sci. 105, 227 (2016).CrossRefGoogle Scholar
Yoo, M.H.: Slip modes of alpha uranium. J. Nucl. Mater. 26, 307 (1968).CrossRefGoogle Scholar
Daniel, J.S., Lesage, B., and Lacombe, P.: The influence of temperature on slip and twinning in uranium. Acta Metall. 19, 163 (1971).CrossRefGoogle Scholar
Cahn, R.W.: Twinning and slip in a-uranium. Acta Crystallogr. 4, 470 (1951).CrossRefGoogle Scholar
Cahn, R.W.: Plastic deformation of alpha-uranium; twinning and slip. Acta Metall. 1, 49 (1953).CrossRefGoogle Scholar
Anderson, R.G. and Bishop, J.W.: The effect of neutron irradiation and thermal cycling on permanent deformations in uranium under load. In Symposium on Uranium and Graphite (1962); p. 17.Google Scholar
Fisher, E.S. and McSkimin, H.J.: Adiabatic elastic moduli of single crystal alpha uranium. J. Appl. Phys. 29, 1473 (1958).CrossRefGoogle Scholar
Rollett, A.D.: Comparison of experimental and theoretical texture development in alpha-uranium. In Symposium on Modeling the Deformation of Crystalline Solids, TMS, Lowe, T.C., Rollett, A.D., Follansbee, P.S., and Daehn, G.S., eds. (1991); p. 361.Google Scholar
McCabe, R.J., Capolungo, L., Marshall, P.E., Cady, C.M., and Tomé, C.N.: Deformation of wrought uranium: Experiments and modeling. Acta Mater. 58, 5447 (2010).CrossRefGoogle Scholar
Brown, D.W., Bourke, M.A.M., Clausen, B., Korzekwa, D.R., Korzekwa, R.C., McCabe, R.J., Sisneros, T.A., and Teter, D.F.: Temperature and direction dependence of internal strain and texture evolution during deformation of uranium. Mater. Sci. Eng., A 512, 67 (2009).CrossRefGoogle Scholar
Choi, C.S. and Staker, M.: Neutron diffraction texture study of deformed uranium plates. J. Mater. Sci. 31, 3397 (1996).CrossRefGoogle Scholar
Wu, K., Chang, H., Maawad, E., Gan, W.M., Brokmeier, H.G., and Zheng, M.Y.: Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB). Mater. Sci. Eng., A 527, 3073 (2010).CrossRefGoogle Scholar
Yang, D., Cizek, P., Hodgson, P., and Wen, C.e.: Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scr. Mater. 62, 321 (2010).CrossRefGoogle Scholar
Bronkhorst, C.A., Mayeur, J.R., Beyerlein, I.J., Mourad, H.M., Hansen, B.L., Mara, N.A., Carpenter, J.S., McCabe, R.J., and Sintay, S.D.: Meso-scale modeling the orientation and interface stability of Cu/Nb-layered composites by rolling. JOM 65, 431 (TMS Warrendale, PA, 2013).CrossRefGoogle Scholar
Hansen, B.L., Carpenter, J.S., Sintay, S.D., Bronkhorst, C.A., McCabe, R.J., Mayeur, J.R., Mourad, H.M., Beyerlein, I.J., Mara, N.A., Chen, S.R., and Gray, G.T. III: Modeling the texture evolution of Cu/Nb layered composites during rolling. Int. J. Plast. 49, 71 (2013).CrossRefGoogle Scholar
Mayeur, J., Beyerlein, I., Bronkhorst, C., and Mourad, H.: The influence of grain interactions on the plastic stability of heterophase interfaces. Mater 7, 302 (2014).CrossRefGoogle ScholarPubMed
Mayeur, J.R., Beyerlein, I.J., Bronkhorst, C.A., and Mourad, H.M.: Incorporating interface affected zones into crystal plasticity. Int. J. Plast. 65, 206 (2015).CrossRefGoogle Scholar
Mayeur, J.R., Beyerlein, I.J., Bronkhorst, C.A., Mourad, H.M., and Hansen, B.L.: A crystal plasticity study of heterophase interface character stability of Cu/Nb bicrystals. Int. J. Plast. 48, 72 (2013).CrossRefGoogle Scholar
Jia, N., Eisenlohr, P., Roters, F., Raabe, D., and Zhao, X.: Orientation dependence of shear banding in face-centered-cubic single crystals. Acta Mater. 60, 3415 (2012).CrossRefGoogle Scholar
Carpenter, J., Nizolek, T., McCabe, R., Zheng, S., Scott, J., Vogel, S., Mara, N., Pollock, T., and Beyerlein, I.: The suppression of instabilities via biphase interfaces during bulk fabrication of nanograined Zr. Mater. Res. Lett. 3, 50 (2015).CrossRefGoogle Scholar
Carpenter, J.S., Nizolek, T., McCabe, R.J., Knezevic, M., Zheng, S.J., Eftink, B.P., Scott, J.E., Vogel, S.C., Pollock, T.M., Mara, N.A., and Beyerlein, I.J.: Bulk texture evolution of nanolamellar Zr–Nb composites processed via accumulative roll bonding. Acta Mater. 92, 97 (2015).CrossRefGoogle Scholar
Wang, C. and Li, R.: Effect of double aging treatment on structure in Inconel 718 alloy. J. Mater. Sci. 39, 2593 (2004).CrossRefGoogle Scholar
Kuo, C.M., Yang, Y.T., Bor, H.Y., Wei, C.N., and Tai, C.C.: Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Mater. Sci. Eng., A 510–511, 289 (2009).CrossRefGoogle Scholar
Ghorbanpour, S., Zecevic, M., Kumar, A., Jahedi, M., Bicknell, J., Jorgensen, L., Beyerlein, I.J., and Knezevic, M.: A crystal plasticity model incorporating the effects of precipitates in superalloys: Application to tensile, compressive, and cyclic deformation of Inconel 718. Int. J. Plast. 99(Suppl. C), 162 (2017).CrossRefGoogle Scholar
Li, D.S., Garmestani, H., and Schoenfeld, S.: Evolution of crystal orientation distribution coefficients during plastic deformation. Scripta Mater. 49, 867 (2003).CrossRefGoogle Scholar
Knezevic, M. and Kalidindi, S.R.: Fast computation of first-order elastic-plastic closures for polycrystalline cubic-orthorhombic microstructures. Comput. Mater. Sci. 39, 643 (2007).CrossRefGoogle Scholar
Knezevic, M. and Landry, N.W.: Procedures for reducing large datasets of crystal orientations using generalized spherical harmonics. Mech. Mater. 88, 73 (2015).CrossRefGoogle Scholar
Jahedi, M., Paydar, M.H., Zheng, S., Beyerlein, I.J., and Knezevic, M.: Texture evolution and enhanced grain refinement under high-pressure-double-torsion. Mater. Sci. Eng., A 611, 29 (2014).CrossRefGoogle Scholar
Eghtesad, A., Barrett, T.J., and Knezevic, M.: Compact reconstruction of orientation distributions using generalized spherical harmonics to advance large-scale crystal plasticity modeling: Verification using cubic, hexagonal, and orthorhombic polycrystals. Acta Mater. 155, 418 (2018).CrossRefGoogle Scholar
Knezevic, M., Al-Harbi, H.F., and Kalidindi, S.R.: Crystal plasticity simulations using discrete Fourier transforms. Acta Mater. 57, 1777 (2009).CrossRefGoogle Scholar
Al-Harbi, H.F., Knezevic, M., and Kalidindi, S.R.: Spectral approaches for the fast computation of yield surfaces and first-order plastic property closures for polycrystalline materials with cubic-triclinic textures. Comput. Mater. Continua 15, 153 (2010).Google Scholar
Knezevic, M., Kalidindi, S.R., and Fullwood, D.: Computationally efficient database and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of face-centered cubic polycrystals. Int. J. Plast. 24, 1264 (2008).CrossRefGoogle Scholar
Kalidindi, S.R., Knezevic, M., Niezgoda, S., and Shaffer, J.: Representation of the orientation distribution function and computation of first-order elastic properties closures using discrete Fourier transforms. Acta Mater. 57, 3916 (2009).CrossRefGoogle Scholar
Landry, N. and Knezevic, M.: Delineation of first-order elastic property closures for hexagonal metals using fast Fourier transforms. Materials 8, 6326 (2015).CrossRefGoogle ScholarPubMed
Barton, N.R., Knap, J., Arsenlis, A., Becker, R., Hornung, R.D., and Jefferson, D.R.: Embedded polycrystal plasticity and adaptive sampling. Int. J. Plast. 24, 242 (2008).CrossRefGoogle Scholar
Barton, N.R., Bernier, J.V., Lebensohn, R.A., and Boyce, D.E.: The use of discrete harmonics in direct multi-scale embedding of polycrystal plasticity. Comput. Meth. Appl. Mech. Eng. 283, 224 (2015).CrossRefGoogle Scholar
Bunge, H-J.: Texture Analysis in Materials Science: Mathematical Methods (Cuvillier Verlag, London, 1993).Google Scholar
Van Houtte, P.: Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials. Int. J. Plast. 10, 719 (1994).CrossRefGoogle Scholar
Mihaila, B., Knezevic, M., and Cardenas, A.: Three orders of magnitude improved efficiency with high—Performance spectral crystal plasticity on GPU platforms. Int. J. Numer. Meth. Eng. 97, 785 (2014).CrossRefGoogle Scholar
Savage, D.J. and Knezevic, M.: Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware. Comput. Mech. 56, 677 (2015).CrossRefGoogle Scholar
Mellbin, Y., Hallberg, H., and Ristinmaa, M.: Accelerating crystal plasticity simulations using GPU multiprocessors. Int. J. Numer. Meth. Eng. 100, 111 (2014).CrossRefGoogle Scholar
Knezevic, M. and Savage, D.J.: A high-performance computational framework for fast crystal plasticity simulations. Comput. Mater. Sci. 83, 101 (2014).CrossRefGoogle Scholar
Alharbi, H.F. and Kalidindi, S.R.: Crystal plasticity finite element simulations using a database of discrete Fourier transforms. Int. J. Plast. 66, 71 (2015).CrossRefGoogle Scholar
Beyerlein, I., Li, S., Necker, C., Alexander, D., and Tomé, C.: Non-uniform microstructure and texture evolution during equal channel angular extrusion. Philos. Mag. 85, 1359 (2005).CrossRefGoogle Scholar
Knezevic, M., Daymond, M.R., and Beyerlein, I.J.: Modeling discrete twin lamellae in a microstructural framework. Scripta Mater. 121, 84 (2016).CrossRefGoogle Scholar